/*
|
******************************************************************************
|
Project: OWA HYDRAULIC
|
Version: 2.2
|
Module: hydcoeffs.c
|
Description: computes coefficients for a hydraulic solution matrix
|
Authors: see AUTHORS
|
Copyright: see AUTHORS
|
License: see LICENSE
|
Last Updated: 10/04/2019
|
******************************************************************************
|
*/
|
|
#include <stdlib.h>
|
#include <stdio.h>
|
#include <string.h>
|
#include <math.h>
|
|
#include "types.h"
|
#include "funcs.h"
|
|
// Constants used for computing Darcy-Weisbach friction factor
|
const double A1 = 3.14159265358979323850e+03; // 1000*PI
|
/*----------begin sh3h-------*/
|
const double A2 = 1.57079632679489661930e+03;// 1.57079632679489661930e+03; // 500*PI
|
/*----------end sh3h-------*/
|
const double A3 = 5.02654824574366918160e+01; // 16*PI
|
const double A4 = 6.28318530717958647700e+00; // 2*PI
|
const double A8 = 4.61841319859066668690e+00; // 5.74*(PI/4)^.9
|
const double A9 = -8.68588963806503655300e-01; // -2/ln(10)
|
const double AA = -1.5634601348517065795e+00; // -2*.9*2/ln(10)
|
const double AB = 3.28895476345399058690e-03; // 5.74/(4000^.9)
|
const double AC = -5.14214965799093883760e-03; // AA*AB
|
|
// Definitions of very small and very big coefficients
|
const double CSMALL = 1.e-6;
|
//const double CBIG = 1.e8;
|
//[CloudflightÐÞ¸Ä]2023-11-24
|
////[CloudflightÐÞ¸Ä]2023-12-28
|
//const double CBIG = 1.e6;
|
const double CBIG = 1.e8;
|
|
|
// Exported functions
|
//void resistcoeff(Project *, int );
|
//void headlosscoeffs(Project *);
|
//void matrixcoeffs(Project *);
|
//void emitterheadloss(Project *, int, double *, double *);
|
//void demandheadloss(Project *, int, double, double, double *, double *);
|
|
// Local functions
|
static void linkcoeffs(Project *pr);
|
static void nodecoeffs(Project *pr);
|
static void valvecoeffs(Project *pr);
|
static void emittercoeffs(Project *pr);
|
static void demandcoeffs(Project *pr);
|
|
static void pipecoeff(Project *pr, int k);
|
static void DWpipecoeff(Project *pr, int k);
|
static double frictionFactor(double q, double e, double s, double *dfdq);
|
|
static void pumpcoeff(Project *pr, int k);
|
static void curvecoeff(Project *pr, int i, double q, double *h0, double *r);
|
|
static void valvecoeff(Project *pr, int k);
|
static void gpvcoeff(Project *pr, int k);
|
static void pbvcoeff(Project *pr, int k);
|
static void tcvcoeff(Project *pr, int k);
|
static void prvcoeff(Project *pr, int k, int n1, int n2);
|
static void psvcoeff(Project *pr, int k, int n1, int n2);
|
static void fcvcoeff(Project *pr, int k, int n1, int n2);
|
|
|
void resistcoeff(Project *pr, int k)
|
/*
|
**--------------------------------------------------------------------
|
** Input: k = link index
|
** Output: none
|
** Purpose: computes link flow resistance coefficient
|
**--------------------------------------------------------------------
|
*/
|
{
|
Network *net = &pr->network;
|
Hydraul *hyd = &pr->hydraul;
|
|
double e, d, L;
|
Slink *link = &net->Link[k];
|
|
switch (link->Type) {
|
|
// ... Link is a pipe. Compute resistance based on headloss formula.
|
// Friction factor for D-W formula gets included during head loss
|
// calculation.
|
case CVPIPE:
|
case PIPE:
|
e = link->Kc; // Roughness coeff.
|
d = link->Diam; // Diameter
|
L = link->Len; // Length
|
switch (hyd->Formflag)
|
{
|
case HW:
|
link->R = 4.727 * L / pow(e, hyd->Hexp) / pow(d, 4.871);
|
break;
|
case DW:
|
link->R = L / 2.0 / 32.2 / d / SQR(PI * SQR(d) / 4.0);
|
break;
|
case CM:
|
link->R = SQR(4.0 * e / (1.49 * PI * SQR(d))) *
|
pow((d / 4.0), -1.333) * L;
|
}
|
break;
|
|
// ... Link is a pump. Use huge resistance.
|
case PUMP:
|
link->R = CBIG;
|
break;
|
|
// ... For all other links (e.g. valves) use a small resistance
|
default:
|
link->R = CSMALL;
|
break;
|
}
|
}
|
|
|
void headlosscoeffs(Project *pr)
|
/*
|
**--------------------------------------------------------------
|
** Input: none
|
** Output: none
|
** Purpose: computes coefficients P (1 / head loss gradient)
|
** and Y (head loss / gradient) for all links.
|
**--------------------------------------------------------------
|
*/
|
{
|
Network *net = &pr->network;
|
Hydraul *hyd = &pr->hydraul;
|
|
int k;
|
|
for (k = 1; k <= net->Nlinks; k++)
|
{
|
switch (net->Link[k].Type)
|
{
|
case CVPIPE:
|
case PIPE:
|
pipecoeff(pr, k);
|
break;
|
case PUMP:
|
pumpcoeff(pr, k);
|
break;
|
case PBV:
|
pbvcoeff(pr, k);
|
break;
|
case TCV:
|
tcvcoeff(pr, k);
|
break;
|
case GPV:
|
gpvcoeff(pr, k);
|
break;
|
case FCV:
|
case PRV:
|
case PSV:
|
if (hyd->LinkSetting[k] == MISSING) valvecoeff(pr, k);
|
else hyd->P[k] = 0.0;
|
}
|
}
|
}
|
|
|
void matrixcoeffs(Project *pr)
|
/*
|
**--------------------------------------------------------------
|
** Input: none
|
** Output: none
|
** Purpose: computes coefficients of linearized network eqns.
|
**--------------------------------------------------------------
|
*/
|
{
|
Network *net = &pr->network;
|
Hydraul *hyd = &pr->hydraul;
|
Smatrix *sm = &hyd->smatrix;
|
|
// Reset values of all diagonal coeffs. (Aii), off-diagonal
|
// coeffs. (Aij), r.h.s. coeffs. (F) and node excess flow (Xflow)
|
memset(sm->Aii, 0, (net->Nnodes + 1) * sizeof(double));
|
memset(sm->Aij, 0, (sm->Ncoeffs + 1) * sizeof(double));
|
memset(sm->F, 0, (net->Nnodes + 1) * sizeof(double));
|
memset(hyd->Xflow, 0, (net->Nnodes + 1) * sizeof(double));
|
|
// Compute matrix coeffs. from links, emitters, and nodal demands
|
linkcoeffs(pr);
|
emittercoeffs(pr);
|
demandcoeffs(pr);
|
|
// Update nodal flow balances with demands and add onto r.h.s. coeffs.
|
nodecoeffs(pr);
|
|
// Finally, find coeffs. for PRV/PSV/FCV control valves whose
|
// status is not fixed to OPEN/CLOSED
|
valvecoeffs(pr);
|
}
|
|
|
void linkcoeffs(Project *pr)
|
/*
|
**--------------------------------------------------------------
|
** Input: none
|
** Output: none
|
** Purpose: computes coefficients contributed by links to the
|
** linearized system of hydraulic equations.
|
**--------------------------------------------------------------
|
*/
|
{
|
Network *net = &pr->network;
|
Hydraul *hyd = &pr->hydraul;
|
Smatrix *sm = &hyd->smatrix;
|
|
int k, n1, n2;
|
Slink *link;
|
|
// Examine each link of network
|
for (k = 1; k <= net->Nlinks; k++)
|
{
|
if (hyd->P[k] == 0.0) continue;
|
link = &net->Link[k];
|
n1 = link->N1; // Start node of link
|
n2 = link->N2; // End node of link
|
|
// Update nodal flow excess (Xflow)
|
// (Flow out of node is (-), flow into node is (+))
|
hyd->Xflow[n1] -= hyd->LinkFlow[k];
|
hyd->Xflow[n2] += hyd->LinkFlow[k];
|
|
// Add to off-diagonal coeff. of linear system matrix
|
sm->Aij[sm->Ndx[k]] -= hyd->P[k];
|
|
// Update linear system coeffs. associated with start node n1
|
// ... node n1 is junction
|
if (n1 <= net->Njuncs)
|
{
|
sm->Aii[sm->Row[n1]] += hyd->P[k]; // Diagonal coeff.
|
sm->F[sm->Row[n1]] += hyd->Y[k]; // RHS coeff.
|
}
|
|
// ... node n1 is a tank/reservoir
|
else sm->F[sm->Row[n2]] += (hyd->P[k] * hyd->NodeHead[n1]);
|
|
// Update linear system coeffs. associated with end node n2
|
// ... node n2 is junction
|
if (n2 <= net->Njuncs)
|
{
|
sm->Aii[sm->Row[n2]] += hyd->P[k]; // Diagonal coeff.
|
sm->F[sm->Row[n2]] -= hyd->Y[k]; // RHS coeff.
|
}
|
|
// ... node n2 is a tank/reservoir
|
else sm->F[sm->Row[n1]] += (hyd->P[k] * hyd->NodeHead[n2]);
|
}
|
}
|
|
|
void nodecoeffs(Project *pr)
|
/*
|
**----------------------------------------------------------------
|
** Input: none
|
** Output: none
|
** Purpose: completes calculation of nodal flow balance array
|
** (Xflow) & r.h.s. (F) of linearized hydraulic eqns.
|
**----------------------------------------------------------------
|
*/
|
{
|
Network *net = &pr->network;
|
Hydraul *hyd = &pr->hydraul;
|
Smatrix *sm = &hyd->smatrix;
|
|
int i;
|
|
// For junction nodes, subtract demand flow from net
|
// flow excess & add flow excess to RHS array F
|
for (i = 1; i <= net->Njuncs; i++)
|
{
|
hyd->Xflow[i] -= hyd->DemandFlow[i];
|
sm->F[sm->Row[i]] += hyd->Xflow[i];
|
}
|
}
|
|
|
void valvecoeffs(Project *pr)
|
/*
|
**--------------------------------------------------------------
|
** Input: none
|
** Output: none
|
** Purpose: computes coeffs. of the linearized hydraulic eqns.
|
** contributed by PRVs, PSVs & FCVs whose status is
|
** not fixed to OPEN/CLOSED
|
**--------------------------------------------------------------
|
*/
|
{
|
Network *net = &pr->network;
|
Hydraul *hyd = &pr->hydraul;
|
|
int i, k, n1, n2;
|
Slink *link;
|
Svalve *valve;
|
|
// Examine each valve
|
for (i = 1; i <= net->Nvalves; i++)
|
{
|
// Find valve's link index
|
valve = &net->Valve[i];
|
k = valve->Link;
|
|
// Coeffs. for fixed status valves have already been computed
|
if (hyd->LinkSetting[k] == MISSING) continue;
|
|
// Start & end nodes of valve's link
|
link = &net->Link[k];
|
n1 = link->N1;
|
n2 = link->N2;
|
|
// Call valve-specific function
|
switch (link->Type)
|
{
|
case PRV:
|
prvcoeff(pr, k, n1, n2);
|
break;
|
case PSV:
|
psvcoeff(pr, k, n1, n2);
|
break;
|
case FCV:
|
fcvcoeff(pr, k, n1, n2);
|
break;
|
default: continue;
|
}
|
}
|
}
|
|
|
void emittercoeffs(Project *pr)
|
/*
|
**--------------------------------------------------------------
|
** Input: none
|
** Output: none
|
** Purpose: computes coeffs. of the linearized hydraulic eqns.
|
** contributed by emitters.
|
**
|
** Note: Emitters consist of a fictitious pipe connected to
|
** a fictitious reservoir whose elevation equals that
|
** of the junction. The headloss through this pipe is
|
** Ke*(Flow)^hyd->Qexp, where Ke = emitter headloss coeff.
|
**--------------------------------------------------------------
|
*/
|
{
|
Network *net = &pr->network;
|
Hydraul *hyd = &pr->hydraul;
|
Smatrix *sm = &hyd->smatrix;
|
|
int i, row;
|
double hloss, hgrad;
|
Snode *node;
|
|
for (i = 1; i <= net->Njuncs; i++)
|
{
|
// Skip junctions without emitters
|
node = &net->Node[i];
|
if (node->Ke == 0.0) continue;
|
|
// Find emitter head loss and gradient
|
emitterheadloss(pr, i, &hloss, &hgrad);
|
|
// Row of solution matrix
|
row = sm->Row[i];
|
|
// Addition to matrix diagonal & r.h.s
|
sm->Aii[row] += 1.0 / hgrad;
|
sm->F[row] += (hloss + node->El) / hgrad;
|
|
// Update to node flow excess
|
hyd->Xflow[i] -= hyd->EmitterFlow[i];
|
}
|
}
|
|
|
void emitterheadloss(Project *pr, int i, double *hloss, double *hgrad)
|
/*
|
**-------------------------------------------------------------
|
** Input: i = node index
|
** Output: hloss = head loss across node's emitter
|
** hgrad = head loss gradient
|
** Purpose: computes an emitters's head loss and gradient.
|
**-------------------------------------------------------------
|
*/
|
{
|
Hydraul *hyd = &pr->hydraul;
|
|
double ke;
|
double q;
|
|
// Set adjusted emitter coeff.
|
ke = MAX(CSMALL, pr->network.Node[i].Ke);
|
|
// Compute gradient of head loss through emitter
|
q = hyd->EmitterFlow[i];
|
*hgrad = hyd->Qexp * ke * pow(fabs(q), hyd->Qexp - 1.0);
|
|
// Use linear head loss function for small gradient
|
if (*hgrad < hyd->RQtol)
|
{
|
*hgrad = hyd->RQtol;
|
*hloss = (*hgrad) * q;
|
}
|
|
// Otherwise use normal emitter head loss function
|
else *hloss = (*hgrad) * q / hyd->Qexp;
|
}
|
|
|
void demandcoeffs(Project *pr)
|
/*
|
**--------------------------------------------------------------
|
** Input: none
|
** Output: none
|
** Purpose: computes coeffs. of the linearized hydraulic eqns.
|
** contributed by pressure dependent demands.
|
**
|
** Note: Pressure dependent demands are modelled like emitters
|
** with Hloss = Preq * (D / Dfull)^(1/Pexp)
|
** where D (actual demand) is zero for negative pressure
|
** and is Dfull above pressure Preq.
|
**--------------------------------------------------------------
|
*/
|
{
|
Network *net = &pr->network;
|
Hydraul *hyd = &pr->hydraul;
|
Smatrix *sm = &hyd->smatrix;
|
|
int i, row;
|
double dp, // pressure range over which demand can vary (ft)
|
n, // exponent in head loss v. demand function
|
hloss, // head loss in supplying demand (ft)
|
hgrad; // gradient of demand head loss (ft/cfs)
|
|
// Get demand function parameters
|
if (hyd->DemandModel == DDA) return;
|
dp = hyd->Preq - hyd->Pmin;
|
n = 1.0 / hyd->Pexp;
|
|
// Examine each junction node
|
for (i = 1; i <= net->Njuncs; i++)
|
{
|
// Skip junctions with non-positive demands
|
if (hyd->NodeDemand[i] <= 0.0) continue;
|
|
// Find head loss for demand outflow at node's elevation
|
demandheadloss(pr, i, dp, n, &hloss, &hgrad);
|
|
// Update row of solution matrix A & its r.h.s. F
|
if (hgrad > 0.0)
|
{
|
row = sm->Row[i];
|
sm->Aii[row] += 1.0 / hgrad;
|
sm->F[row] += (hloss + net->Node[i].El + hyd->Pmin) / hgrad;
|
}
|
}
|
}
|
|
void demandheadloss(Project *pr, int i, double dp, double n,
|
double *hloss, double *hgrad)
|
/*
|
**--------------------------------------------------------------
|
** Input: i = junction index
|
** dp = pressure range for demand function (ft)
|
** n = exponent in head v. demand function
|
** Output: hloss = pressure dependent demand head loss (ft)
|
** hgrad = gradient of head loss (ft/cfs)
|
** Purpose: computes head loss and its gradient for delivering
|
** a pressure dependent demand flow.
|
**--------------------------------------------------------------
|
*/
|
{
|
Hydraul *hyd = &pr->hydraul;
|
|
double d = hyd->DemandFlow[i];
|
double dfull = hyd->NodeDemand[i];
|
double r = d / dfull;
|
|
// Use lower barrier function for negative demand
|
if (r <= 0)
|
{
|
*hgrad = CBIG;
|
*hloss = CBIG * d;
|
}
|
|
// Use power head loss function for demand less than full
|
else if (r < 1.0)
|
{
|
*hgrad = n * dp * pow(r, n - 1.0) / dfull;
|
// ... use linear function for very small gradient
|
if (*hgrad < hyd->RQtol)
|
{
|
*hgrad = hyd->RQtol;
|
*hloss = (*hgrad) * d;
|
}
|
else *hloss = (*hgrad) * d / n;
|
}
|
|
// Use upper barrier function for demand above full value
|
else
|
{
|
*hgrad = CBIG;
|
*hloss = dp + CBIG * (d - dfull);
|
}
|
}
|
|
|
void pipecoeff(Project *pr, int k)
|
/*
|
**--------------------------------------------------------------
|
** Input: k = link index
|
** Output: none
|
** Purpose: computes P & Y coefficients for pipe k.
|
**
|
** P = inverse head loss gradient = 1/hgrad
|
** Y = flow correction term = hloss / hgrad
|
**--------------------------------------------------------------
|
*/
|
{
|
Hydraul *hyd = &pr->hydraul;
|
|
double hloss, // Head loss
|
hgrad, // Head loss gradient
|
ml, // Minor loss coeff.
|
q, // Abs. value of flow
|
r; // Resistance coeff.
|
|
// For closed pipe use headloss formula: hloss = CBIG*q
|
if (hyd->LinkStatus[k] <= CLOSED)
|
{
|
hyd->P[k] = 1.0 / CBIG;
|
hyd->Y[k] = hyd->LinkFlow[k];
|
return;
|
}
|
|
// Use custom function for Darcy-Weisbach formula
|
if (hyd->Formflag == DW)
|
{
|
DWpipecoeff(pr, k);
|
return;
|
}
|
|
q = ABS(hyd->LinkFlow[k]);
|
ml = pr->network.Link[k].Km;
|
r = pr->network.Link[k].R;
|
|
// Friction head loss gradient
|
hgrad = hyd->Hexp * r * pow(q, hyd->Hexp - 1.0);
|
|
// Friction head loss:
|
// ... use linear function for very small gradient
|
if (hgrad < hyd->RQtol)
|
{
|
hgrad = hyd->RQtol;
|
hloss = hgrad * q;
|
}
|
// ... otherwise use original formula
|
else hloss = hgrad * q / hyd->Hexp;
|
|
// Contribution of minor head loss
|
if (ml > 0.0)
|
{
|
hloss += ml * q * q;
|
hgrad += 2.0 * ml * q;
|
}
|
|
// Adjust head loss sign for flow direction
|
hloss *= SGN(hyd->LinkFlow[k]);
|
|
// P and Y coeffs.
|
hyd->P[k] = 1.0 / hgrad;
|
hyd->Y[k] = hloss / hgrad;
|
}
|
|
|
void DWpipecoeff(Project *pr, int k)
|
/*
|
**--------------------------------------------------------------
|
** Input: k = link index
|
** Output: none
|
** Purpose: computes pipe head loss coeffs. for Darcy-Weisbach
|
** formula.
|
**--------------------------------------------------------------
|
*/
|
{
|
Hydraul *hyd = &pr->hydraul;
|
Slink *link = &pr->network.Link[k];
|
|
double q = ABS(hyd->LinkFlow[k]);
|
double r = link->R; // Resistance coeff.
|
double ml = link->Km; // Minor loss coeff.
|
double e = link->Kc / link->Diam; // Relative roughness
|
double s = hyd->Viscos * link->Diam; // Viscosity / diameter
|
double hloss, hgrad, f, dfdq, r1;
|
|
// Compute head loss and its derivative
|
// ... use Hagen-Poiseuille formula for laminar flow (Re <= 2000)
|
if (q <= A2 * s)
|
{
|
r = 16.0 * PI * s * r;
|
hloss = hyd->LinkFlow[k] * (r + ml * q);
|
hgrad = r + 2.0 * ml * q;
|
}
|
|
// ... otherwise use Darcy-Weisbach formula with friction factor
|
else
|
{
|
dfdq = 0.0;
|
f = frictionFactor(q, e, s, &dfdq);
|
r1 = f * r + ml;
|
hloss = r1 * q * hyd->LinkFlow[k];
|
hgrad = (2.0 * r1 * q) + (dfdq * r * q * q);
|
}
|
|
// Compute P and Y coefficients
|
hyd->P[k] = 1.0 / hgrad;
|
hyd->Y[k] = hloss / hgrad;
|
}
|
|
|
double frictionFactor(double q, double e, double s, double *dfdq)
|
/*
|
**--------------------------------------------------------------
|
** Input: q = |pipe flow|
|
** e = pipe roughness / diameter
|
** s = viscosity * pipe diameter
|
** Output: dfdq = derivative of friction factor w.r.t. flow
|
** Returns: pipe's friction factor
|
** Purpose: computes Darcy-Weisbach friction factor and its
|
** derivative as a function of Reynolds Number (Re).
|
**--------------------------------------------------------------
|
*/
|
{
|
double f; // friction factor
|
double x1, x2, x3, x4,
|
y1, y2, y3,
|
fa, fb, r;
|
double w = q / s; // Re*Pi/4
|
|
// For Re >= 4000 use Swamee & Jain approximation
|
// of the Colebrook-White Formula
|
if ( w >= A1 )
|
{
|
y1 = A8 / pow(w, 0.9);
|
y2 = e / 3.7 + y1;
|
y3 = A9 * log(y2);
|
f = 1.0 / (y3*y3);
|
*dfdq = 1.8 * f * y1 * A9 / y2 / y3 / q;
|
}
|
|
// Use interpolating polynomials developed by
|
// E. Dunlop for transition flow from 2000 < Re < 4000.
|
else
|
{
|
y2 = e / 3.7 + AB;
|
y3 = A9 * log(y2);
|
fa = 1.0 / (y3*y3);
|
fb = (2.0 + AC / (y2*y3)) * fa;
|
r = w / A2;
|
x1 = 7.0 * fa - fb;
|
x2 = 0.128 - 17.0 * fa + 2.5 * fb;
|
x3 = -0.128 + 13.0 * fa - (fb + fb);
|
x4 = 0.032 - 3.0 * fa + 0.5 *fb;
|
f = x1 + r * (x2 + r * (x3 + r * x4));
|
*dfdq = (x2 + r * (2.0 * x3 + r * 3.0 * x4)) / s / A2;
|
}
|
return f;
|
}
|
|
|
void pumpcoeff(Project *pr, int k)
|
/*
|
**--------------------------------------------------------------
|
** Input: k = link index
|
** Output: none
|
** Purpose: computes P & Y coeffs. for pump in link k
|
**--------------------------------------------------------------
|
*/
|
{
|
Hydraul *hyd = &pr->hydraul;
|
|
int p; // Pump index
|
double h0, // Shutoff head
|
q, // Abs. value of flow
|
r, // Flow resistance coeff.
|
n, // Flow exponent coeff.
|
setting, // Pump speed setting
|
hloss, // Head loss across pump
|
hgrad; // Head loss gradient
|
Spump *pump;
|
|
// Use high resistance pipe if pump closed or cannot deliver head
|
setting = hyd->LinkSetting[k];
|
if (hyd->LinkStatus[k] <= CLOSED || setting == 0.0)
|
{
|
hyd->P[k] = 1.0 / CBIG;
|
hyd->Y[k] = hyd->LinkFlow[k];
|
return;
|
}
|
|
// Obtain reference to pump object
|
q = ABS(hyd->LinkFlow[k]);
|
p = findpump(&pr->network, k);
|
pump = &pr->network.Pump[p];
|
|
// If no pump curve treat pump as an open valve
|
if (pump->Ptype == NOCURVE)
|
{
|
hyd->P[k] = 1.0 / CSMALL;
|
hyd->Y[k] = hyd->LinkFlow[k];
|
return;
|
}
|
|
// Get pump curve coefficients for custom pump curve
|
// (Other pump types have pre-determined coeffs.)
|
if (pump->Ptype == CUSTOM)
|
{
|
// Find intercept (h0) & slope (r) of pump curve
|
// line segment which contains speed-adjusted flow.
|
curvecoeff(pr, pump->Hcurve, q / setting, &h0, &r);
|
|
// Determine head loss coefficients (negative sign
|
// converts from pump curve's head gain to head loss)
|
pump->H0 = -h0;
|
pump->R = -r;
|
pump->N = 1.0;
|
|
// Compute head loss and its gradient (with speed adjustment)
|
hgrad = pump->R * setting ;
|
hloss = pump->H0 * SQR(setting) + hgrad * hyd->LinkFlow[k];
|
}
|
else
|
{
|
// Adjust head loss coefficients for pump speed
|
h0 = SQR(setting) * pump->H0;
|
n = pump->N;
|
if (ABS(n - 1.0) < TINY) n = 1.0;
|
r = pump->R * pow(setting, 2.0 - n);
|
|
// Constant HP pump
|
if (pump->Ptype == CONST_HP)
|
{
|
// ... compute pump curve's gradient
|
hgrad = -r / q / q;
|
// ... use linear curve if gradient too large or too small
|
if (hgrad > CBIG)
|
{
|
hgrad = CBIG;
|
hloss = -hgrad * hyd->LinkFlow[k];
|
}
|
else if (hgrad < hyd->RQtol)
|
{
|
hgrad = hyd->RQtol;
|
hloss = -hgrad * hyd->LinkFlow[k];
|
}
|
// ... otherwise compute head loss from pump curve
|
else
|
{
|
hloss = r / hyd->LinkFlow[k];
|
}
|
}
|
|
// Compute head loss and its gradient
|
// ... pump curve is nonlinear
|
else if (n != 1.0)
|
{
|
// ... compute pump curve's gradient
|
hgrad = n * r * pow(q, n - 1.0);
|
// ... use linear pump curve if gradient too small
|
if (hgrad < hyd->RQtol)
|
{
|
hgrad = hyd->RQtol;
|
hloss = h0 + hgrad * hyd->LinkFlow[k];
|
}
|
// ... otherwise compute head loss from pump curve
|
else hloss = h0 + hgrad * hyd->LinkFlow[k] / n;
|
}
|
// ... pump curve is linear
|
else
|
{
|
hgrad = r;
|
hloss = h0 + hgrad * hyd->LinkFlow[k];
|
}
|
}
|
|
// P and Y coeffs.
|
hyd->P[k] = 1.0 / hgrad;
|
hyd->Y[k] = hloss / hgrad;
|
}
|
|
|
void curvecoeff(Project *pr, int i, double q, double *h0, double *r)
|
/*
|
**-------------------------------------------------------------------
|
** Input: i = curve index
|
** q = flow rate
|
** Output: *h0 = head at zero flow (y-intercept)
|
** *r = dHead/dFlow (slope)
|
** Purpose: computes intercept and slope of head v. flow curve
|
** at current flow.
|
**-------------------------------------------------------------------
|
*/
|
{
|
int k1, k2, npts;
|
double *x, *y;
|
Scurve *curve;
|
|
// Remember that curve is stored in untransformed units
|
q *= pr->Ucf[FLOW];
|
curve = &pr->network.Curve[i];
|
x = curve->X; // x = flow
|
y = curve->Y; // y = head
|
npts = curve->Npts;
|
|
// Find linear segment of curve that brackets flow q
|
k2 = 0;
|
while (k2 < npts && x[k2] < q) k2++;
|
if (k2 == 0) k2++;
|
else if (k2 == npts) k2--;
|
k1 = k2 - 1;
|
|
// Compute slope and intercept of this segment
|
*r = (y[k2] - y[k1]) / (x[k2] - x[k1]);
|
*h0 = y[k1] - (*r)*x[k1];
|
|
// Convert units
|
*h0 = (*h0) / pr->Ucf[HEAD];
|
*r = (*r) * pr->Ucf[FLOW] / pr->Ucf[HEAD];
|
}
|
|
|
void gpvcoeff(Project *pr, int k)
|
/*
|
**--------------------------------------------------------------
|
** Input: k = link index
|
** Output: none
|
** Purpose: computes P & Y coeffs. for general purpose valve
|
**--------------------------------------------------------------
|
*/
|
{
|
int i;
|
double h0, // Intercept of head loss curve segment
|
r, // Slope of head loss curve segment
|
q; // Abs. value of flow
|
|
Hydraul *hyd = &pr->hydraul;
|
|
// Treat as a pipe if valve closed
|
if (hyd->LinkStatus[k] == CLOSED) valvecoeff(pr, k);
|
else if (hyd->LinkStatus[k] == OPEN) valvecoeff(pr, k);
|
// Otherwise utilize segment of head loss curve
|
// bracketing current flow (curve index is stored
|
// in valve's setting)
|
else
|
{
|
// Index of valve's head loss curve
|
i = (int)ROUND(hyd->LinkSetting[k]);
|
|
// Adjusted flow rate
|
q = ABS(hyd->LinkFlow[k]);
|
q = MAX(q, TINY);
|
|
// Intercept and slope of curve segment containing q
|
curvecoeff(pr, i, q, &h0, &r);
|
r = MAX(r, TINY);
|
|
// Resulting P and Y coeffs.
|
hyd->P[k] = 1.0 / r;
|
hyd->Y[k] = (h0 / r + q) * SGN(hyd->LinkFlow[k]);
|
}
|
}
|
|
|
void pbvcoeff(Project *pr, int k)
|
/*
|
**--------------------------------------------------------------
|
** Input: k = link index
|
** Output: none
|
** Purpose: computes P & Y coeffs. for pressure breaker valve
|
**--------------------------------------------------------------
|
*/
|
{
|
Hydraul *hyd = &pr->hydraul;
|
Slink *link = &pr->network.Link[k];
|
|
// If valve fixed OPEN or CLOSED then treat as a pipe
|
if (hyd->LinkSetting[k] == MISSING || hyd->LinkSetting[k] == 0.0)
|
{
|
valvecoeff(pr, k);
|
}
|
|
// If valve is active
|
else
|
{
|
// Treat as a pipe if minor loss > valve setting
|
if (link->Km * SQR(hyd->LinkFlow[k]) > hyd->LinkSetting[k])
|
{
|
valvecoeff(pr, k);
|
}
|
// Otherwise force headloss across valve to be equal to setting
|
else
|
{
|
hyd->P[k] = CBIG;
|
hyd->Y[k] = hyd->LinkSetting[k] * CBIG;
|
}
|
}
|
}
|
|
|
void tcvcoeff(Project *pr, int k)
|
/*
|
**--------------------------------------------------------------
|
** Input: k = link index
|
** Output: none
|
** Purpose: computes P & Y coeffs. for throttle control valve
|
**--------------------------------------------------------------
|
*/
|
{
|
double km;
|
Hydraul *hyd = &pr->hydraul;
|
Slink *link = &pr->network.Link[k];
|
|
// Save original loss coeff. for open valve
|
km = link->Km;
|
|
// If valve not fixed OPEN or CLOSED, compute its loss coeff.
|
if (hyd->LinkSetting[k] != MISSING)
|
{
|
link->Km = 0.02517 * hyd->LinkSetting[k] / (SQR(link->Diam)*SQR(link->Diam));
|
}
|
|
// Then apply usual valve formula
|
valvecoeff(pr, k);
|
|
// Restore original loss coeff.
|
link->Km = km;
|
}
|
|
|
void prvcoeff(Project *pr, int k, int n1, int n2)
|
/*
|
**--------------------------------------------------------------
|
** Input: k = link index
|
** n1 = upstream node of valve
|
** n2 = downstream node of valve
|
** Output: none
|
** Purpose: computes solution matrix coeffs. for pressure
|
** reducing valves
|
**--------------------------------------------------------------
|
*/
|
{
|
Hydraul *hyd = &pr->hydraul;
|
Smatrix *sm = &hyd->smatrix;
|
|
int i, j; // Rows of solution matrix
|
double hset; // Valve head setting
|
|
i = sm->Row[n1]; // Matrix rows of nodes
|
j = sm->Row[n2];
|
hset = pr->network.Node[n2].El +
|
hyd->LinkSetting[k]; // Valve setting
|
|
if (hyd->LinkStatus[k] == ACTIVE)
|
{
|
|
// Set coeffs. to force head at downstream
|
// node equal to valve setting & force flow
|
// to equal to flow excess at downstream node.
|
|
hyd->P[k] = 0.0;
|
hyd->Y[k] = hyd->LinkFlow[k] + hyd->Xflow[n2]; // Force flow balance
|
sm->F[j] += (hset * CBIG); // Force head = hset
|
sm->Aii[j] += CBIG; // at downstream node
|
if (hyd->Xflow[n2] < 0.0)
|
{
|
sm->F[i] += hyd->Xflow[n2];
|
}
|
return;
|
}
|
|
// For OPEN, CLOSED, or XPRESSURE valve
|
// compute matrix coeffs. using the valvecoeff() function.
|
|
valvecoeff(pr, k);
|
sm->Aij[sm->Ndx[k]] -= hyd->P[k];
|
sm->Aii[i] += hyd->P[k];
|
sm->Aii[j] += hyd->P[k];
|
sm->F[i] += (hyd->Y[k] - hyd->LinkFlow[k]);
|
sm->F[j] -= (hyd->Y[k] - hyd->LinkFlow[k]);
|
}
|
|
|
void psvcoeff(Project *pr, int k, int n1, int n2)
|
/*
|
**--------------------------------------------------------------
|
** Input: k = link index
|
** n1 = upstream node of valve
|
** n2 = downstream node of valve
|
** Output: none
|
** Purpose: computes solution matrix coeffs. for pressure
|
** sustaining valve
|
**--------------------------------------------------------------
|
*/
|
{
|
Hydraul *hyd = &pr->hydraul;
|
Smatrix *sm = &hyd->smatrix;
|
|
int i, j; // Rows of solution matrix
|
double hset; // Valve head setting
|
|
i = sm->Row[n1]; // Matrix rows of nodes
|
j = sm->Row[n2];
|
hset = pr->network.Node[n1].El +
|
hyd->LinkSetting[k]; // Valve setting
|
|
if (hyd->LinkStatus[k] == ACTIVE)
|
{
|
// Set coeffs. to force head at upstream
|
// node equal to valve setting & force flow
|
// equal to flow excess at upstream node.
|
|
hyd->P[k] = 0.0;
|
hyd->Y[k] = hyd->LinkFlow[k] - hyd->Xflow[n1]; // Force flow balance
|
sm->F[i] += (hset * CBIG); // Force head = hset
|
sm->Aii[i] += CBIG; // at upstream node
|
if (hyd->Xflow[n1] > 0.0)
|
{
|
sm->F[j] += hyd->Xflow[n1];
|
}
|
return;
|
}
|
|
// For OPEN, CLOSED, or XPRESSURE valve
|
// compute matrix coeffs. using the valvecoeff() function.
|
|
valvecoeff(pr, k);
|
sm->Aij[sm->Ndx[k]] -= hyd->P[k];
|
sm->Aii[i] += hyd->P[k];
|
sm->Aii[j] += hyd->P[k];
|
sm->F[i] += (hyd->Y[k] - hyd->LinkFlow[k]);
|
sm->F[j] -= (hyd->Y[k] - hyd->LinkFlow[k]);
|
}
|
|
|
void fcvcoeff(Project *pr, int k, int n1, int n2)
|
/*
|
**--------------------------------------------------------------
|
** Input: k = link index
|
** n1 = upstream node of valve
|
** n2 = downstream node of valve
|
** Output: none
|
** Purpose: computes solution matrix coeffs. for flow control
|
** valve
|
**--------------------------------------------------------------
|
*/
|
{
|
Hydraul *hyd = &pr->hydraul;
|
Smatrix *sm = &hyd->smatrix;
|
|
int i, j; // Rows in solution matrix
|
double q; // Valve flow setting
|
|
q = hyd->LinkSetting[k];
|
i = sm->Row[n1];
|
j = sm->Row[n2];
|
|
// If valve active, break network at valve and treat
|
// flow setting as external demand at upstream node
|
// and external supply at downstream node.
|
|
if (hyd->LinkStatus[k] == ACTIVE)
|
{
|
hyd->Xflow[n1] -= q;
|
hyd->Xflow[n2] += q;
|
hyd->Y[k] = hyd->LinkFlow[k] - q;
|
sm->F[i] -= q;
|
sm->F[j] += q;
|
hyd->P[k] = 1.0 / CBIG;
|
sm->Aij[sm->Ndx[k]] -= hyd->P[k];
|
sm->Aii[i] += hyd->P[k];
|
sm->Aii[j] += hyd->P[k];
|
}
|
|
// Otherwise treat valve as an open pipe
|
|
else
|
{
|
valvecoeff(pr, k);
|
sm->Aij[sm->Ndx[k]] -= hyd->P[k];
|
sm->Aii[i] += hyd->P[k];
|
sm->Aii[j] += hyd->P[k];
|
sm->F[i] += (hyd->Y[k] - hyd->LinkFlow[k]);
|
sm->F[j] -= (hyd->Y[k] - hyd->LinkFlow[k]);
|
}
|
}
|
|
|
void valvecoeff(Project *pr, int k)
|
/*
|
**--------------------------------------------------------------
|
** Input: k = link index
|
** Output: none
|
** Purpose: computes solution matrix coeffs. for a completely
|
** open, closed, or throttled control valve.
|
**--------------------------------------------------------------
|
*/
|
{
|
Hydraul *hyd = &pr->hydraul;
|
Slink *link = &pr->network.Link[k];
|
|
double flow, q, hloss, hgrad;
|
|
flow = hyd->LinkFlow[k];
|
|
// Valve is closed. Use a very small matrix coeff.
|
if (hyd->LinkStatus[k] <= CLOSED)
|
{
|
hyd->P[k] = 1.0 / CBIG;
|
hyd->Y[k] = flow;
|
return;
|
}
|
|
// Account for any minor headloss through the valve
|
if (link->Km > 0.0)
|
{
|
q = fabs(flow);
|
hgrad = 2.0 * link->Km * q;
|
|
// Guard against too small a head loss gradient
|
if (hgrad < hyd->RQtol)
|
{
|
hgrad = hyd->RQtol;
|
hloss = flow * hgrad;
|
}
|
else hloss = flow * hgrad / 2.0;
|
|
// P and Y coeffs.
|
hyd->P[k] = 1.0 / hgrad;
|
hyd->Y[k] = hloss / hgrad;
|
}
|
|
// If no minor loss coeff. specified use a
|
// low resistance linear head loss relation
|
else
|
{
|
hyd->P[k] = 1.0 / CSMALL;
|
hyd->Y[k] = flow;
|
}
|
}
|