duheng
2025-03-28 b825d70578b0ddf6d479569887c194f919795dad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
namespace PBS.WinFrmUI.Hydro
{
    // 算法:排列组合类
    //
    // 版权所有(C) Snowdust
    // 个人博客    http://blog.csdn.net/snowdust & http://snowdust.cnblogs.com
    // MSN & Email snowdust77@sina.com
    //
    // 此源代码可免费用于各类软件(含商业软件)
    // 允许对此代码的进一步修改与开发
    // 但必须完整保留此版权信息
    //
    // 调用方法如下:
    //
    // 1.GetPermutation(T[], startIndex, endIndex)
    // 对startIndex到endIndex进行排列,其余元素不变
    //
    // 2.GetPermutation(T[])
    // 返回数组所有元素的全排列
    //
    // 3.GetPermutation(T[], n)
    // 返回数组中n个元素的排列
    //
    // 4.GetCombination(T[], n)
    // 返回数组中n个元素的组合
 
    //使用实例
    //int[] arr = new int[6];
    //for (int i = 0; i < arr.Length; i++)
    //{
    //    arr[i] = i + 1;
    //}
    ////求排列
    //List<int[]> lst_Permutation = Eventech.Model.PermutationAndCombination<int>.GetPermutation(arr, 3);
    ////求组合
    //List<int[]> lst_Combination = Eventech.Model.PermutationAndCombination<int>.GetCombination(arr, 3);
 
 
    public class PermutationAndCombination<T>
    {
        /// <summary>
        /// 交换两个变量
        /// </summary>
        /// <param name="a">变量1</param>
        /// <param name="b">变量2</param>
        public static void Swap(ref T a, ref T b)
        {
            T temp = a;
            a = b;
            b = temp;
        }
 
        /// <summary>
        /// 递归算法求数组的组合(私有成员)
        /// </summary>
        /// <param name="list">返回的范型</param>
        /// <param name="t">所求数组</param>
        /// <param name="n">辅助变量</param>
        /// <param name="m">辅助变量</param>
        /// <param name="b">辅助数组</param>
        /// <param name="M">辅助变量M</param>
        private static void GetCombination(ref List<T[]> list, T[] t, int n, int m, int[] b, int M)
        {
            for (int i = n; i >= m; i--)
            {
                b[m - 1] = i - 1;
                if (m > 1)
                {
                    GetCombination(ref list, t, i - 1, m - 1, b, M);
                }
                else
                {
                    if (list == null)
                    {
                        list = new List<T[]>();
                    }
                    T[] temp = new T[M];
                    for (int j = 0; j < b.Length; j++)
                    {
                        temp[j] = t[b[j]];
                    }
                    list.Add(temp);
                }
            }
        }
 
        /// <summary>
        /// 递归算法求排列(私有成员)
        /// </summary>
        /// <param name="list">返回的列表</param>
        /// <param name="t">所求数组</param>
        /// <param name="startIndex">起始标号</param>
        /// <param name="endIndex">结束标号</param>
        private static void GetPermutation(ref List<T[]> list, T[] t, int startIndex, int endIndex)
        {
            if (startIndex == endIndex)
            {
                if (list == null)
                {
                    list = new List<T[]>();
                }
                T[] temp = new T[t.Length];
                t.CopyTo(temp, 0);
                list.Add(temp);
            }
            else
            {
                for (int i = startIndex; i <= endIndex; i++)
                {
                    Swap(ref t[startIndex], ref t[i]);
                    GetPermutation(ref list, t, startIndex + 1, endIndex);
                    Swap(ref t[startIndex], ref t[i]);
                }
            }
        }
 
        /// <summary>
        /// 求从起始标号到结束标号的排列,其余元素不变
        /// </summary>
        /// <param name="t">所求数组</param>
        /// <param name="startIndex">起始标号</param>
        /// <param name="endIndex">结束标号</param>
        /// <returns>从起始标号到结束标号排列的范型</returns>
        public static List<T[]> GetPermutation(T[] t, int startIndex, int endIndex)
        {
            if (startIndex < 0 || endIndex > t.Length - 1)
            {
                return null;
            }
            List<T[]> list = new List<T[]>();
            GetPermutation(ref list, t, startIndex, endIndex);
            return list;
        }
 
        /// <summary>
        /// 返回数组所有元素的全排列
        /// </summary>
        /// <param name="t">所求数组</param>
        /// <returns>全排列的范型</returns>
        public static List<T[]> GetPermutation(T[] t)
        {
            return GetPermutation(t, 0, t.Length - 1);
        }
 
        /// <summary>
        /// 求数组中n个元素的排列
        /// </summary>
        /// <param name="t">所求数组</param>
        /// <param name="n">元素个数</param>
        /// <returns>数组中n个元素的排列</returns>
        public static List<T[]> GetPermutation(T[] t, int n)
        {
            if (n > t.Length)
            {
                return null;
            }
            List<T[]> list = new List<T[]>();
            List<T[]> c = GetCombination(t, n);
            for (int i = 0; i < c.Count; i++)
            {
                List<T[]> l = new List<T[]>();
                GetPermutation(ref l, c[i], 0, n - 1);
                list.AddRange(l);
            }
            return list;
        }
 
 
        /// <summary>
        /// 求数组中n个元素的组合
        /// </summary>
        /// <param name="t">所求数组</param>
        /// <param name="n">元素个数</param>
        /// <returns>数组中n个元素的组合的范型</returns>
        public static List<T[]> GetCombination(T[] t, int n)
        {
            if (t.Length < n)
            {
                return null;
            }
            int[] temp = new int[n];
            List<T[]> list = new List<T[]>();
            GetCombination(ref list, t, t.Length, n, temp, n);
            return list;
        }
    }
}