// <copyright file="DenseEvd.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2020 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using IStation.Numerics.Providers.LinearAlgebra;
|
|
namespace IStation.Numerics.LinearAlgebra.Double.Factorization
|
{
|
using Complex = System.Numerics.Complex;
|
|
/// <summary>
|
/// Eigenvalues and eigenvectors of a real matrix.
|
/// </summary>
|
/// <remarks>
|
/// If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
|
/// diagonal and the eigenvector matrix V is orthogonal.
|
/// I.e. A = V*D*V' and V*VT=I.
|
/// If A is not symmetric, then the eigenvalue matrix D is block diagonal
|
/// with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
|
/// lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
|
/// columns of V represent the eigenvectors in the sense that A*V = V*D,
|
/// i.e. A.Multiply(V) equals V.Multiply(D). The matrix V may be badly
|
/// conditioned, or even singular, so the validity of the equation
|
/// A = V*D*Inverse(V) depends upon V.Condition().
|
/// </remarks>
|
internal sealed class DenseEvd : Evd
|
{
|
/// <summary>
|
/// Initializes a new instance of the <see cref="DenseEvd"/> class. This object will compute the
|
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
|
/// </summary>
|
/// <param name="matrix">The matrix to factor.</param>
|
/// <param name="symmetricity">If it is known whether the matrix is symmetric or not the routine can skip checking it itself.</param>
|
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
|
/// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
|
public static DenseEvd Create(DenseMatrix matrix, Symmetricity symmetricity)
|
{
|
if (matrix.RowCount != matrix.ColumnCount)
|
{
|
throw new ArgumentException("Matrix must be square.");
|
}
|
|
var order = matrix.RowCount;
|
|
// Initialize matrices for eigenvalues and eigenvectors
|
var eigenVectors = new DenseMatrix(order);
|
var blockDiagonal = new DenseMatrix(order);
|
var eigenValues = new LinearAlgebra.Complex.DenseVector(order);
|
|
bool isSymmetric;
|
switch (symmetricity)
|
{
|
case Symmetricity.Symmetric:
|
case Symmetricity.Hermitian:
|
isSymmetric = true;
|
break;
|
case Symmetricity.Asymmetric:
|
isSymmetric = false;
|
break;
|
default:
|
isSymmetric = matrix.IsSymmetric();
|
break;
|
}
|
|
LinearAlgebraControl.Provider.EigenDecomp(isSymmetric, order, matrix.Values, eigenVectors.Values, eigenValues.Values, blockDiagonal.Values);
|
|
return new DenseEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
|
}
|
|
DenseEvd(Matrix<double> eigenVectors, Vector<Complex> eigenValues, Matrix<double> blockDiagonal, bool isSymmetric)
|
: base(eigenVectors, eigenValues, blockDiagonal, isSymmetric)
|
{
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>AX = B</b>, with A SVD factorized.
|
/// </summary>
|
/// <param name="input">The right hand side <see cref="Matrix{T}"/>, <b>B</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>X</b>.</param>
|
public override void Solve(Matrix<double> input, Matrix<double> result)
|
{
|
// The solution X should have the same number of columns as B
|
if (input.ColumnCount != result.ColumnCount)
|
{
|
throw new ArgumentException("Matrix column dimensions must agree.");
|
}
|
|
// The dimension compatibility conditions for X = A\B require the two matrices A and B to have the same number of rows
|
if (EigenValues.Count != input.RowCount)
|
{
|
throw new ArgumentException("Matrix row dimensions must agree.");
|
}
|
|
// The solution X row dimension is equal to the column dimension of A
|
if (EigenValues.Count != result.RowCount)
|
{
|
throw new ArgumentException("Matrix column dimensions must agree.");
|
}
|
|
if (IsSymmetric)
|
{
|
var order = EigenValues.Count;
|
var tmp = new double[order];
|
|
for (var k = 0; k < order; k++)
|
{
|
for (var j = 0; j < order; j++)
|
{
|
double value = 0;
|
if (j < order)
|
{
|
for (var i = 0; i < order; i++)
|
{
|
value += ((DenseMatrix) EigenVectors).Values[(j*order) + i]*input.At(i, k);
|
}
|
|
value /= EigenValues[j].Real;
|
}
|
|
tmp[j] = value;
|
}
|
|
for (var j = 0; j < order; j++)
|
{
|
double value = 0;
|
for (var i = 0; i < order; i++)
|
{
|
value += ((DenseMatrix) EigenVectors).Values[(i*order) + j]*tmp[i];
|
}
|
|
result.At(j, k, value);
|
}
|
}
|
}
|
else
|
{
|
throw new ArgumentException("Matrix must be symmetric.");
|
}
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>Ax = b</b>, with A EVD factorized.
|
/// </summary>
|
/// <param name="input">The right hand side vector, <b>b</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>x</b>.</param>
|
public override void Solve(Vector<double> input, Vector<double> result)
|
{
|
// Ax=b where A is an m x m matrix
|
// Check that b is a column vector with m entries
|
if (EigenValues.Count != input.Count)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
// Check that x is a column vector with n entries
|
if (EigenValues.Count != result.Count)
|
{
|
throw new ArgumentException("Matrix dimensions must agree.");
|
}
|
|
if (IsSymmetric)
|
{
|
// Symmetric case -> x = V * inv(λ) * VT * b;
|
var order = EigenValues.Count;
|
var tmp = new double[order];
|
double value;
|
|
for (var j = 0; j < order; j++)
|
{
|
value = 0;
|
if (j < order)
|
{
|
for (var i = 0; i < order; i++)
|
{
|
value += ((DenseMatrix) EigenVectors).Values[(j*order) + i]*input[i];
|
}
|
|
value /= EigenValues[j].Real;
|
}
|
|
tmp[j] = value;
|
}
|
|
for (var j = 0; j < order; j++)
|
{
|
value = 0;
|
for (var i = 0; i < order; i++)
|
{
|
value += ((DenseMatrix) EigenVectors).Values[(i*order) + j]*tmp[i];
|
}
|
|
result[j] = value;
|
}
|
}
|
else
|
{
|
throw new ArgumentException("Matrix must be symmetric.");
|
}
|
}
|
}
|
}
|