// <copyright file="GeneralizedHyperGeometric.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2020 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
// <contribution>
|
// Andrew J. Willshire
|
// </contribution>
|
|
using System;
|
using System.Linq;
|
|
namespace IStation.Numerics
|
{
|
public static partial class SpecialFunctions
|
{
|
//Rising and falling factorials - reference here:
|
//https://en.wikipedia.org/wiki/Falling_and_rising_factorials
|
|
/// <summary>
|
/// Computes the Rising Factorial (Pochhammer function) x -> (x)n, n>= 0. see: https://en.wikipedia.org/wiki/Falling_and_rising_factorials
|
/// </summary>
|
/// <returns>The real value of the Rising Factorial for x and n</returns>
|
public static double RisingFactorial(double x, int n)
|
{
|
double accumulator = 1.0;
|
|
for (int k = 0; k < n; k++)
|
{
|
accumulator *= (x + k);
|
}
|
return accumulator;
|
}
|
|
/// <summary>
|
/// Computes the Falling Factorial (Pochhammer function) x -> x(n), n>= 0. see: https://en.wikipedia.org/wiki/Falling_and_rising_factorials
|
/// </summary>
|
/// <returns>The real value of the Falling Factorial for x and n</returns>
|
public static double FallingFactorial(double x, int n)
|
{
|
double accumulator = 1.0;
|
|
for (int k = 0; k < n; k++)
|
{
|
accumulator *= (x - k);
|
}
|
return accumulator;
|
}
|
|
/// <summary>
|
/// A generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by n is a rational function of n.
|
/// This is the most common pFq(a1, ..., ap; b1,...,bq; z) representation
|
/// see: https://en.wikipedia.org/wiki/Generalized_hypergeometric_function
|
/// </summary>
|
/// <param name="a">The list of coefficients in the numerator</param>
|
/// <param name="b">The list of coefficients in the denominator</param>
|
/// <param name="z">The variable in the power series</param>
|
/// <returns>The value of the Generalized HyperGeometric Function.</returns>
|
public static double GeneralizedHypergeometric(double[] a, double[] b, int z)
|
{
|
const double epsilon = 0.000000000000001;
|
|
double cumulatives = 0.0;
|
double currentIncrement;
|
int n = 0;
|
|
do
|
{
|
currentIncrement = HGIncrement(a, b, z, n);
|
cumulatives += currentIncrement;
|
n += 1;
|
}
|
while (Math.Abs(currentIncrement) > epsilon && Math.Abs(currentIncrement) > 0 && currentIncrement.IsFinite());
|
|
return cumulatives;
|
}
|
|
//Calculate each iteration of the function
|
private static double HGIncrement(double[] a, double[] b, int z, int currentN)
|
{
|
double incrementAs = 1.0;
|
double incrementBs = 1.0;
|
|
double[] incrementAArray = new double[a.Length];
|
double[] incrementBArray = new double[b.Length];
|
|
for (int p = 0; p < a.Length; p++)
|
{
|
incrementAs *= RisingFactorial(a[p], currentN);
|
incrementAArray[p] = RisingFactorial(a[p], currentN);
|
}
|
|
for (int q = 0; q < b.Length; q++)
|
{
|
incrementBs *= RisingFactorial(b[q], currentN);
|
incrementBArray[q] = RisingFactorial(b[q], currentN);
|
}
|
|
double numZeros = (from x in incrementAArray where x == 0 select x).Count();
|
double numPoles = (from x in incrementBArray where x == 0 select x).Count();
|
|
if (numZeros > 0 && numZeros >= numPoles)
|
{
|
return 0.0;
|
}
|
else if (numPoles > 0 && numPoles > numZeros)
|
{
|
return double.PositiveInfinity;
|
}
|
else
|
{
|
return incrementAs / incrementBs * Math.Pow(z, currentN) / Factorial(currentN);
|
}
|
}
|
|
}
|
}
|