// <copyright file="HybridMCGeneric.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2010 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
namespace IStation.Numerics.Statistics.Mcmc
|
{
|
using System;
|
using Distributions;
|
|
/// <summary>
|
/// The Hybrid (also called Hamiltonian) Monte Carlo produces samples from distribution P using a set
|
/// of Hamiltonian equations to guide the sampling process. It uses the negative of the log density as
|
/// a potential energy, and a randomly generated momentum to set up a Hamiltonian system, which is then used
|
/// to sample the distribution. This can result in a faster convergence than the random walk Metropolis sampler
|
/// (<seealso cref="MetropolisSampler{T}"/>).
|
/// </summary>
|
/// <typeparam name="T">The type of samples this sampler produces.</typeparam>
|
public abstract class HybridMCGeneric<T> : McmcSampler<T>
|
{
|
/// <summary>
|
/// The delegate type that defines a derivative evaluated at a certain point.
|
/// </summary>
|
/// <param name="f">Function to be differentiated.</param>
|
/// <param name="x">Value where the derivative is computed.</param>
|
public delegate T DiffMethod(DensityLn<T> f, T x);
|
|
/// <summary>
|
/// Evaluates the energy function of the target distribution.
|
/// </summary>
|
readonly DensityLn<T> _energy;
|
|
/// <summary>
|
/// The current location of the sampler.
|
/// </summary>
|
protected T Current;
|
|
/// <summary>
|
/// The number of burn iterations between two samples.
|
/// </summary>
|
int _burnInterval;
|
|
/// <summary>
|
/// The size of each step in the Hamiltonian equation.
|
/// </summary>
|
double _stepSize;
|
|
/// <summary>
|
/// The number of iterations in the Hamiltonian equation.
|
/// </summary>
|
int _frogLeapSteps;
|
|
/// <summary>
|
/// The algorithm used for differentiation.
|
/// </summary>
|
readonly DiffMethod _diff;
|
|
/// <summary>
|
/// Gets or sets the number of iterations in between returning samples.
|
/// </summary>
|
/// <exception cref="ArgumentOutOfRangeException">When burn interval is negative.</exception>
|
public int BurnInterval
|
{
|
get => _burnInterval;
|
set => _burnInterval = SetNonNegative(value);
|
}
|
|
/// <summary>
|
/// Gets or sets the number of iterations in the Hamiltonian equation.
|
/// </summary>
|
/// <exception cref="ArgumentOutOfRangeException">When frog leap steps is negative or zero.</exception>
|
public int FrogLeapSteps
|
{
|
get => _frogLeapSteps;
|
set => _frogLeapSteps = SetPositive(value);
|
}
|
|
/// <summary>
|
/// Gets or sets the size of each step in the Hamiltonian equation.
|
/// </summary>
|
/// <exception cref="ArgumentOutOfRangeException">When step size is negative or zero.</exception>
|
public double StepSize
|
{
|
get => _stepSize;
|
set => _stepSize = SetPositive(value);
|
}
|
|
/// <summary>
|
/// Constructs a new Hybrid Monte Carlo sampler.
|
/// </summary>
|
/// <param name="x0">The initial sample.</param>
|
/// <param name="pdfLnP">The log density of the distribution we want to sample from.</param>
|
/// <param name="frogLeapSteps">Number frog leap simulation steps.</param>
|
/// <param name="stepSize">Size of the frog leap simulation steps.</param>
|
/// <param name="burnInterval">The number of iterations in between returning samples.</param>
|
/// <param name="randomSource">Random number generator used for sampling the momentum.</param>
|
/// <param name="diff">The method used for differentiation.</param>
|
/// <exception cref="ArgumentOutOfRangeException">When the number of burnInterval iteration is negative.</exception>
|
/// <exception cref="ArgumentNullException">When either x0, pdfLnP or diff is null.</exception>
|
protected HybridMCGeneric(T x0, DensityLn<T> pdfLnP, int frogLeapSteps, double stepSize, int burnInterval, Random randomSource, DiffMethod diff)
|
{
|
_energy = x => -pdfLnP(x);
|
FrogLeapSteps = frogLeapSteps;
|
StepSize = stepSize;
|
BurnInterval = burnInterval;
|
Current = x0;
|
_diff = diff;
|
RandomSource = randomSource;
|
}
|
|
/// <summary>
|
/// Returns a sample from the distribution P.
|
/// </summary>
|
public override T Sample()
|
{
|
Burn(_burnInterval + 1);
|
|
return Current;
|
}
|
|
/// <summary>
|
/// This method runs the sampler for a number of iterations without returning a sample
|
/// </summary>
|
protected void Burn(int n)
|
{
|
T p = Create();
|
double e = _energy(Current);
|
T gradient = _diff(_energy, Current);
|
for (int i = 0; i < n; i++)
|
{
|
RandomizeMomentum(ref p);
|
double h = Hamiltonian(p, e);
|
|
|
T mNew = Copy(Current);
|
T gNew = Copy(gradient);
|
|
for (int j = 0; j < _frogLeapSteps; j++)
|
{
|
HamiltonianEquations(ref gNew, ref mNew, ref p);
|
}
|
|
double enew = _energy(mNew);
|
double hnew = Hamiltonian(p, enew);
|
|
double dh = hnew - h;
|
|
Update(ref e, ref gradient, mNew, gNew, enew, dh);
|
Samples++;
|
}
|
}
|
|
/// <summary>
|
/// Method used to update the sample location. Used in the end of the loop.
|
/// </summary>
|
/// <param name="e">The old energy.</param>
|
/// <param name="gradient">The old gradient/derivative of the energy.</param>
|
/// <param name="mNew">The new sample.</param>
|
/// <param name="gNew">The new gradient/derivative of the energy.</param>
|
/// <param name="enew">The new energy.</param>
|
/// <param name="dh">The difference between the old Hamiltonian and new Hamiltonian. Use to determine
|
/// if an update should take place. </param>
|
protected void Update(ref double e, ref T gradient, T mNew, T gNew, double enew, double dh)
|
{
|
if (dh <= 0)
|
{
|
Current = mNew; gradient = gNew; e = enew; Accepts++;
|
}
|
else if (Bernoulli.Sample(RandomSource, Math.Exp(-dh)) == 1)
|
{
|
Current = mNew; gradient = gNew; e = enew; Accepts++;
|
}
|
}
|
|
/// <summary>
|
/// Use for creating temporary objects in the Burn method.
|
/// </summary>
|
/// <returns>An object of type T.</returns>
|
protected abstract T Create();
|
|
/// <summary>
|
/// Use for copying objects in the Burn method.
|
/// </summary>
|
/// <param name="source">The source of copying.</param>
|
/// <returns>A copy of the source object.</returns>
|
protected abstract T Copy(T source);
|
|
/// <summary>
|
/// Method for doing dot product.
|
/// </summary>
|
/// <param name="first">First vector/scalar in the product.</param>
|
/// <param name="second">Second vector/scalar in the product.</param>
|
protected abstract double DoProduct(T first, T second);
|
|
/// <summary>
|
/// Method for adding, multiply the second vector/scalar by factor and then
|
/// add it to the first vector/scalar.
|
/// </summary>
|
/// <param name="first">First vector/scalar.</param>
|
/// <param name="factor">Scalar factor multiplying by the second vector/scalar.</param>
|
/// <param name="second">Second vector/scalar.</param>
|
protected abstract void DoAdd(ref T first, double factor, T second);
|
|
/// <summary>
|
/// Multiplying the second vector/scalar by factor and then subtract it from
|
/// the first vector/scalar.
|
/// </summary>
|
/// <param name="first">First vector/scalar.</param>
|
/// <param name="factor">Scalar factor to be multiplied to the second vector/scalar.</param>
|
/// <param name="second">Second vector/scalar.</param>
|
protected abstract void DoSubtract(ref T first, double factor, T second);
|
|
/// <summary>
|
/// Method for sampling a random momentum.
|
/// </summary>
|
/// <param name="p">Momentum to be randomized.</param>
|
protected abstract void RandomizeMomentum(ref T p);
|
|
/// <summary>
|
/// The Hamiltonian equations that is used to produce the new sample.
|
/// </summary>
|
protected void HamiltonianEquations(ref T gNew, ref T mNew, ref T p)
|
{
|
DoSubtract(ref p, _stepSize / 2, gNew);
|
DoAdd(ref mNew, _stepSize, p);
|
gNew = _diff(_energy, mNew);
|
DoSubtract(ref p, _stepSize / 2, gNew);
|
}
|
|
/// <summary>
|
/// Method to compute the Hamiltonian used in the method.
|
/// </summary>
|
/// <param name="momentum">The momentum.</param>
|
/// <param name="e">The energy.</param>
|
/// <returns>Hamiltonian=E+p.p/2</returns>
|
protected double Hamiltonian(T momentum, double e)
|
{
|
return e + DoProduct(momentum, momentum) / 2;
|
}
|
|
/// <summary>
|
/// Method to check and set a quantity to a non-negative value.
|
/// </summary>
|
/// <param name="value">Proposed value to be checked.</param>
|
/// <returns>Returns value if it is greater than or equal to zero.</returns>
|
/// <exception cref="ArgumentOutOfRangeException">Throws when value is negative.</exception>
|
protected int SetNonNegative(int value)
|
{
|
if (value < 0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(value), "Value must not be negative (zero is ok).");
|
}
|
return value;
|
}
|
|
/// <summary>
|
/// Method to check and set a quantity to a non-negative value.
|
/// </summary>
|
/// <param name="value">Proposed value to be checked.</param>
|
/// <returns>Returns value if it is greater than to zero.</returns>
|
/// <exception cref="ArgumentOutOfRangeException">Throws when value is negative or zero.</exception>
|
protected int SetPositive(int value)
|
{
|
if (value <= 0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(value), "Value must not be negative (zero is ok).");
|
}
|
return value;
|
}
|
|
/// <summary>
|
/// Method to check and set a quantity to a non-negative value.
|
/// </summary>
|
/// <param name="value">Proposed value to be checked.</param>
|
/// <returns>Returns value if it is greater than zero.</returns>
|
/// <exception cref="ArgumentOutOfRangeException">Throws when value is negative or zero.</exception>
|
protected double SetPositive(double value)
|
{
|
if (value <= 0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(value), "Value must not be negative (zero is ok).");
|
}
|
return value;
|
}
|
}
|
}
|