// <copyright file="ManagedFourierTransformProvider.Bluestein.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// https://numerics.mathdotnet.com
|
//
|
// Copyright (c) 2009-2018 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using IStation.Numerics.Threading;
|
using Complex = System.Numerics.Complex;
|
|
namespace IStation.Numerics.Providers.FourierTransform.Managed
|
{
|
internal partial class ManagedFourierTransformProvider
|
{
|
/// <summary>
|
/// Sequences with length greater than Math.Sqrt(Int32.MaxValue) + 1
|
/// will cause k*k in the Bluestein sequence to overflow (GH-286).
|
/// </summary>
|
const int BluesteinSequenceLengthThreshold = 46341;
|
|
/// <summary>
|
/// Generate the bluestein sequence for the provided problem size.
|
/// </summary>
|
/// <param name="n">Number of samples.</param>
|
/// <returns>Bluestein sequence exp(I*Pi*k^2/N)</returns>
|
private static Complex32[] BluesteinSequence32(int n)
|
{
|
double s = Constants.Pi / n;
|
var sequence = new Complex32[n];
|
|
// TODO: benchmark whether the second variation is significantly
|
// faster than the former one. If not just use the former one always.
|
if (n > BluesteinSequenceLengthThreshold)
|
{
|
for (int k = 0; k < sequence.Length; k++)
|
{
|
double t = (s * k) * k;
|
sequence[k] = new Complex32((float)Math.Cos(t), (float)Math.Sin(t));
|
}
|
}
|
else
|
{
|
for (int k = 0; k < sequence.Length; k++)
|
{
|
double t = s * (k * k);
|
sequence[k] = new Complex32((float)Math.Cos(t), (float)Math.Sin(t));
|
}
|
}
|
|
return sequence;
|
}
|
|
/// <summary>
|
/// Generate the bluestein sequence for the provided problem size.
|
/// </summary>
|
/// <param name="n">Number of samples.</param>
|
/// <returns>Bluestein sequence exp(I*Pi*k^2/N)</returns>
|
private static Complex[] BluesteinSequence(int n)
|
{
|
double s = Constants.Pi / n;
|
var sequence = new Complex[n];
|
|
// TODO: benchmark whether the second variation is significantly
|
// faster than the former one. If not just use the former one always.
|
if (n > BluesteinSequenceLengthThreshold)
|
{
|
for (int k = 0; k < sequence.Length; k++)
|
{
|
double t = (s * k) * k;
|
sequence[k] = new Complex(Math.Cos(t), Math.Sin(t));
|
}
|
}
|
else
|
{
|
for (int k = 0; k < sequence.Length; k++)
|
{
|
double t = s * (k * k);
|
sequence[k] = new Complex(Math.Cos(t), Math.Sin(t));
|
}
|
}
|
|
return sequence;
|
}
|
|
/// <summary>
|
/// Convolution with the bluestein sequence (Parallel Version).
|
/// </summary>
|
/// <param name="samples">Sample Vector.</param>
|
private static void BluesteinConvolutionParallel(Complex32[] samples)
|
{
|
int n = samples.Length;
|
Complex32[] sequence = BluesteinSequence32(n);
|
|
// Padding to power of two >= 2N–1 so we can apply Radix-2 FFT.
|
int m = ((n << 1) - 1).CeilingToPowerOfTwo();
|
var b = new Complex32[m];
|
var a = new Complex32[m];
|
|
CommonParallel.Invoke(
|
() =>
|
{
|
// Build and transform padded sequence b_k = exp(I*Pi*k^2/N)
|
for (int i = 0; i < n; i++)
|
{
|
b[i] = sequence[i];
|
}
|
|
for (int i = m - n + 1; i < b.Length; i++)
|
{
|
b[i] = sequence[m - i];
|
}
|
|
Radix2Forward(b);
|
},
|
() =>
|
{
|
// Build and transform padded sequence a_k = x_k * exp(-I*Pi*k^2/N)
|
for (int i = 0; i < samples.Length; i++)
|
{
|
a[i] = sequence[i].Conjugate() * samples[i];
|
}
|
|
Radix2Forward(a);
|
});
|
|
for (int i = 0; i < a.Length; i++)
|
{
|
a[i] *= b[i];
|
}
|
|
Radix2InverseParallel(a);
|
|
var nbinv = 1.0f / m;
|
for (int i = 0; i < samples.Length; i++)
|
{
|
samples[i] = nbinv * sequence[i].Conjugate() * a[i];
|
}
|
}
|
|
/// <summary>
|
/// Convolution with the bluestein sequence (Parallel Version).
|
/// </summary>
|
/// <param name="samples">Sample Vector.</param>
|
private static void BluesteinConvolutionParallel(Complex[] samples)
|
{
|
int n = samples.Length;
|
Complex[] sequence = BluesteinSequence(n);
|
|
// Padding to power of two >= 2N–1 so we can apply Radix-2 FFT.
|
int m = ((n << 1) - 1).CeilingToPowerOfTwo();
|
var b = new Complex[m];
|
var a = new Complex[m];
|
|
CommonParallel.Invoke(
|
() =>
|
{
|
// Build and transform padded sequence b_k = exp(I*Pi*k^2/N)
|
for (int i = 0; i < n; i++)
|
{
|
b[i] = sequence[i];
|
}
|
|
for (int i = m - n + 1; i < b.Length; i++)
|
{
|
b[i] = sequence[m - i];
|
}
|
|
Radix2Forward(b);
|
},
|
() =>
|
{
|
// Build and transform padded sequence a_k = x_k * exp(-I*Pi*k^2/N)
|
for (int i = 0; i < samples.Length; i++)
|
{
|
a[i] = sequence[i].Conjugate() * samples[i];
|
}
|
|
Radix2Forward(a);
|
});
|
|
for (int i = 0; i < a.Length; i++)
|
{
|
a[i] *= b[i];
|
}
|
|
Radix2InverseParallel(a);
|
|
var nbinv = 1.0 / m;
|
for (int i = 0; i < samples.Length; i++)
|
{
|
samples[i] = nbinv * sequence[i].Conjugate() * a[i];
|
}
|
}
|
|
/// <summary>
|
/// Swap the real and imaginary parts of each sample.
|
/// </summary>
|
/// <param name="samples">Sample Vector.</param>
|
private static void SwapRealImaginary(Complex32[] samples)
|
{
|
for (int i = 0; i < samples.Length; i++)
|
{
|
samples[i] = new Complex32(samples[i].Imaginary, samples[i].Real);
|
}
|
}
|
|
/// <summary>
|
/// Swap the real and imaginary parts of each sample.
|
/// </summary>
|
/// <param name="samples">Sample Vector.</param>
|
private static void SwapRealImaginary(Complex[] samples)
|
{
|
for (int i = 0; i < samples.Length; i++)
|
{
|
samples[i] = new Complex(samples[i].Imaginary, samples[i].Real);
|
}
|
}
|
|
/// <summary>
|
/// Bluestein generic FFT for arbitrary sized sample vectors.
|
/// </summary>
|
private static void BluesteinForward(Complex[] samples)
|
{
|
BluesteinConvolutionParallel(samples);
|
}
|
|
/// <summary>
|
/// Bluestein generic FFT for arbitrary sized sample vectors.
|
/// </summary>
|
private static void BluesteinInverse(Complex[] spectrum)
|
{
|
SwapRealImaginary(spectrum);
|
BluesteinConvolutionParallel(spectrum);
|
SwapRealImaginary(spectrum);
|
}
|
|
/// <summary>
|
/// Bluestein generic FFT for arbitrary sized sample vectors.
|
/// </summary>
|
private static void BluesteinForward(Complex32[] samples)
|
{
|
BluesteinConvolutionParallel(samples);
|
}
|
|
/// <summary>
|
/// Bluestein generic FFT for arbitrary sized sample vectors.
|
/// </summary>
|
private static void BluesteinInverse(Complex32[] spectrum)
|
{
|
SwapRealImaginary(spectrum);
|
BluesteinConvolutionParallel(spectrum);
|
SwapRealImaginary(spectrum);
|
}
|
}
|
}
|