// <copyright file="NewtonCotesTrapeziumRule.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using System.Numerics;
|
|
namespace IStation.Numerics.Integration
|
{
|
/// <summary>
|
/// Approximation algorithm for definite integrals by the Trapezium rule of the Newton-Cotes family.
|
/// </summary>
|
/// <remarks>
|
/// <a href="http://en.wikipedia.org/wiki/Trapezium_rule">Wikipedia - Trapezium Rule</a>
|
/// </remarks>
|
public static class NewtonCotesTrapeziumRule
|
{
|
/// <summary>
|
/// Direct 2-point approximation of the definite integral in the provided interval by the trapezium rule.
|
/// </summary>
|
/// <param name="f">The analytic smooth function to integrate.</param>
|
/// <param name="intervalBegin">Where the interval starts, inclusive and finite.</param>
|
/// <param name="intervalEnd">Where the interval stops, inclusive and finite.</param>
|
/// <returns>Approximation of the finite integral in the given interval.</returns>
|
public static double IntegrateTwoPoint(Func<double, double> f, double intervalBegin, double intervalEnd)
|
{
|
if (f == null)
|
{
|
throw new ArgumentNullException(nameof(f));
|
}
|
|
return (intervalEnd - intervalBegin)/2*(f(intervalBegin) + f(intervalEnd));
|
}
|
|
/// <summary>
|
/// Direct 2-point approximation of the definite integral in the provided interval by the trapezium rule.
|
/// </summary>
|
/// <param name="f">The analytic smooth complex function to integrate, defined on real domain.</param>
|
/// <param name="intervalBegin">Where the interval starts, inclusive and finite.</param>
|
/// <param name="intervalEnd">Where the interval stops, inclusive and finite.</param>
|
/// <returns>Approximation of the finite integral in the given interval.</returns>
|
public static Complex ContourIntegrateTwoPoint(Func<double, Complex> f, double intervalBegin, double intervalEnd)
|
{
|
if (f == null)
|
{
|
throw new ArgumentNullException(nameof(f));
|
}
|
|
return (intervalEnd - intervalBegin) / 2 * (f(intervalBegin) + f(intervalEnd));
|
}
|
|
/// <summary>
|
/// Composite N-point approximation of the definite integral in the provided interval by the trapezium rule.
|
/// </summary>
|
/// <param name="f">The analytic smooth function to integrate.</param>
|
/// <param name="intervalBegin">Where the interval starts, inclusive and finite.</param>
|
/// <param name="intervalEnd">Where the interval stops, inclusive and finite.</param>
|
/// <param name="numberOfPartitions">Number of composite subdivision partitions.</param>
|
/// <returns>Approximation of the finite integral in the given interval.</returns>
|
public static double IntegrateComposite(Func<double, double> f, double intervalBegin, double intervalEnd, int numberOfPartitions)
|
{
|
if (f == null)
|
{
|
throw new ArgumentNullException(nameof(f));
|
}
|
|
if (numberOfPartitions <= 0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(numberOfPartitions), "Value must be positive (and not zero).");
|
}
|
|
double step = (intervalEnd - intervalBegin)/numberOfPartitions;
|
|
double offset = step;
|
double sum = 0.5*(f(intervalBegin) + f(intervalEnd));
|
for (int i = 0; i < numberOfPartitions - 1; i++)
|
{
|
// NOTE (ruegg, 2009-01-07): Do not combine intervalBegin and offset (numerical stability!)
|
sum += f(intervalBegin + offset);
|
offset += step;
|
}
|
|
return step*sum;
|
}
|
|
/// <summary>
|
/// Composite N-point approximation of the definite integral in the provided interval by the trapezium rule.
|
/// </summary>
|
/// <param name="f">The analytic smooth complex function to integrate, defined on real domain.</param>
|
/// <param name="intervalBegin">Where the interval starts, inclusive and finite.</param>
|
/// <param name="intervalEnd">Where the interval stops, inclusive and finite.</param>
|
/// <param name="numberOfPartitions">Number of composite subdivision partitions.</param>
|
/// <returns>Approximation of the finite integral in the given interval.</returns>
|
public static Complex ContourIntegrateComposite(Func<double, Complex> f, double intervalBegin, double intervalEnd, int numberOfPartitions)
|
{
|
if (f == null)
|
{
|
throw new ArgumentNullException(nameof(f));
|
}
|
|
if (numberOfPartitions <= 0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(numberOfPartitions), "Value must be positive (and not zero).");
|
}
|
|
double step = (intervalEnd - intervalBegin) / numberOfPartitions;
|
|
double offset = step;
|
Complex sum = 0.5 * (f(intervalBegin) + f(intervalEnd));
|
for (int i = 0; i < numberOfPartitions - 1; i++)
|
{
|
// NOTE (ruegg, 2009-01-07): Do not combine intervalBegin and offset (numerical stability!)
|
sum += f(intervalBegin + offset);
|
offset += step;
|
}
|
|
return step * sum;
|
}
|
|
/// <summary>
|
/// Adaptive approximation of the definite integral in the provided interval by the trapezium rule.
|
/// </summary>
|
/// <param name="f">The analytic smooth function to integrate.</param>
|
/// <param name="intervalBegin">Where the interval starts, inclusive and finite.</param>
|
/// <param name="intervalEnd">Where the interval stops, inclusive and finite.</param>
|
/// <param name="targetError">The expected accuracy of the approximation.</param>
|
/// <returns>Approximation of the finite integral in the given interval.</returns>
|
public static double IntegrateAdaptive(Func<double, double> f, double intervalBegin, double intervalEnd, double targetError)
|
{
|
if (f == null)
|
{
|
throw new ArgumentNullException(nameof(f));
|
}
|
|
int numberOfPartitions = 1;
|
double step = intervalEnd - intervalBegin;
|
double sum = 0.5*step*(f(intervalBegin) + f(intervalEnd));
|
for (int k = 0; k < 20; k++)
|
{
|
double midpointsum = 0;
|
for (int i = 0; i < numberOfPartitions; i++)
|
{
|
midpointsum += f(intervalBegin + ((i + 0.5)*step));
|
}
|
|
midpointsum *= step;
|
sum = 0.5*(sum + midpointsum);
|
step *= 0.5;
|
numberOfPartitions *= 2;
|
|
if (sum.AlmostEqualRelative(midpointsum, targetError))
|
{
|
break;
|
}
|
}
|
|
return sum;
|
}
|
|
/// <summary>
|
/// Adaptive approximation of the definite integral in the provided interval by the trapezium rule.
|
/// </summary>
|
/// <param name="f">The analytic smooth complex function to integrate, define don real domain.</param>
|
/// <param name="intervalBegin">Where the interval starts, inclusive and finite.</param>
|
/// <param name="intervalEnd">Where the interval stops, inclusive and finite.</param>
|
/// <param name="targetError">The expected accuracy of the approximation.</param>
|
/// <returns>Approximation of the finite integral in the given interval.</returns>
|
public static Complex ContourIntegrateAdaptive(Func<double, Complex> f, double intervalBegin, double intervalEnd, double targetError)
|
{
|
if (f == null)
|
{
|
throw new ArgumentNullException(nameof(f));
|
}
|
|
int numberOfPartitions = 1;
|
double step = intervalEnd - intervalBegin;
|
Complex sum = 0.5 * step * (f(intervalBegin) + f(intervalEnd));
|
for (int k = 0; k < 20; k++)
|
{
|
Complex midpointsum = 0;
|
for (int i = 0; i < numberOfPartitions; i++)
|
{
|
midpointsum += f(intervalBegin + ((i + 0.5) * step));
|
}
|
|
midpointsum *= step;
|
sum = 0.5 * (sum + midpointsum);
|
step *= 0.5;
|
numberOfPartitions *= 2;
|
|
if (sum.AlmostEqualRelative(midpointsum, targetError))
|
{
|
break;
|
}
|
}
|
|
return sum;
|
}
|
|
|
/// <summary>
|
/// Adaptive approximation of the definite integral by the trapezium rule.
|
/// </summary>
|
/// <param name="f">The analytic smooth function to integrate.</param>
|
/// <param name="intervalBegin">Where the interval starts, inclusive and finite.</param>
|
/// <param name="intervalEnd">Where the interval stops, inclusive and finite.</param>
|
/// <param name="levelAbscissas">Abscissa vector per level provider.</param>
|
/// <param name="levelWeights">Weight vector per level provider.</param>
|
/// <param name="levelOneStep">First Level Step</param>
|
/// <param name="targetRelativeError">The expected relative accuracy of the approximation.</param>
|
/// <returns>Approximation of the finite integral in the given interval.</returns>
|
public static double IntegrateAdaptiveTransformedOdd(
|
Func<double, double> f,
|
double intervalBegin, double intervalEnd,
|
IEnumerable<double[]> levelAbscissas, IEnumerable<double[]> levelWeights,
|
double levelOneStep, double targetRelativeError)
|
{
|
if (f == null)
|
{
|
throw new ArgumentNullException(nameof(f));
|
}
|
|
if (levelAbscissas == null)
|
{
|
throw new ArgumentNullException(nameof(levelAbscissas));
|
}
|
|
if (levelWeights == null)
|
{
|
throw new ArgumentNullException(nameof(levelWeights));
|
}
|
|
double linearSlope = 0.5*(intervalEnd - intervalBegin);
|
double linearOffset = 0.5*(intervalEnd + intervalBegin);
|
targetRelativeError /= 5*linearSlope;
|
|
using (var abcissasIterator = levelAbscissas.GetEnumerator())
|
using (var weightsIterator = levelWeights.GetEnumerator())
|
{
|
double step = levelOneStep;
|
|
// First Level
|
abcissasIterator.MoveNext();
|
weightsIterator.MoveNext();
|
double[] abcissasL1 = abcissasIterator.Current;
|
double[] weightsL1 = weightsIterator.Current;
|
|
double sum = f(linearOffset)*weightsL1[0];
|
for (int i = 1; i < abcissasL1.Length; i++)
|
{
|
sum += weightsL1[i]*(f((linearSlope*abcissasL1[i]) + linearOffset) + f(-(linearSlope*abcissasL1[i]) + linearOffset));
|
}
|
|
sum *= step;
|
|
// Additional Levels
|
double previousDelta = double.MaxValue;
|
for (int level = 1; abcissasIterator.MoveNext() && weightsIterator.MoveNext(); level++)
|
{
|
double[] abcissas = abcissasIterator.Current;
|
double[] weights = weightsIterator.Current;
|
|
double midpointsum = 0;
|
for (int i = 0; i < abcissas.Length; i++)
|
{
|
midpointsum += weights[i]*(f((linearSlope*abcissas[i]) + linearOffset) + f(-(linearSlope*abcissas[i]) + linearOffset));
|
}
|
|
midpointsum *= step;
|
sum = 0.5*(sum + midpointsum);
|
step *= 0.5;
|
|
double delta = Math.Abs(sum - midpointsum);
|
|
if (level == 1)
|
{
|
previousDelta = delta;
|
continue;
|
}
|
|
double r = Math.Log(delta)/Math.Log(previousDelta);
|
previousDelta = delta;
|
|
if (r > 1.9 && r < 2.1)
|
{
|
// convergence region
|
delta = Math.Sqrt(delta);
|
}
|
|
if (sum.AlmostEqualNormRelative(midpointsum, delta, targetRelativeError))
|
{
|
break;
|
}
|
}
|
|
return sum*linearSlope;
|
}
|
}
|
|
/// <summary>
|
/// Adaptive approximation of the definite integral by the trapezium rule.
|
/// </summary>
|
/// <param name="f">The analytic smooth complex function to integrate, defined on the real domain.</param>
|
/// <param name="intervalBegin">Where the interval starts, inclusive and finite.</param>
|
/// <param name="intervalEnd">Where the interval stops, inclusive and finite.</param>
|
/// <param name="levelAbscissas">Abscissa vector per level provider.</param>
|
/// <param name="levelWeights">Weight vector per level provider.</param>
|
/// <param name="levelOneStep">First Level Step</param>
|
/// <param name="targetRelativeError">The expected relative accuracy of the approximation.</param>
|
/// <returns>Approximation of the finite integral in the given interval.</returns>
|
public static Complex ContourIntegrateAdaptiveTransformedOdd(
|
Func<double, Complex> f,
|
double intervalBegin, double intervalEnd,
|
IEnumerable<double[]> levelAbscissas, IEnumerable<double[]> levelWeights,
|
double levelOneStep, double targetRelativeError)
|
{
|
if (f == null)
|
{
|
throw new ArgumentNullException(nameof(f));
|
}
|
|
if (levelAbscissas == null)
|
{
|
throw new ArgumentNullException(nameof(levelAbscissas));
|
}
|
|
if (levelWeights == null)
|
{
|
throw new ArgumentNullException(nameof(levelWeights));
|
}
|
|
double linearSlope = 0.5 * (intervalEnd - intervalBegin);
|
double linearOffset = 0.5 * (intervalEnd + intervalBegin);
|
targetRelativeError /= 5 * linearSlope;
|
|
using (var abcissasIterator = levelAbscissas.GetEnumerator())
|
using (var weightsIterator = levelWeights.GetEnumerator())
|
{
|
double step = levelOneStep;
|
|
// First Level
|
abcissasIterator.MoveNext();
|
weightsIterator.MoveNext();
|
double[] abcissasL1 = abcissasIterator.Current;
|
double[] weightsL1 = weightsIterator.Current;
|
|
Complex sum = f(linearOffset) * weightsL1[0];
|
for (int i = 1; i < abcissasL1.Length; i++)
|
{
|
sum += weightsL1[i] * (f((linearSlope * abcissasL1[i]) + linearOffset) + f(-(linearSlope * abcissasL1[i]) + linearOffset));
|
}
|
|
sum *= step;
|
|
// Additional Levels
|
double previousDelta = double.MaxValue;
|
for (int level = 1; abcissasIterator.MoveNext() && weightsIterator.MoveNext(); level++)
|
{
|
double[] abcissas = abcissasIterator.Current;
|
double[] weights = weightsIterator.Current;
|
|
Complex midpointsum = 0;
|
for (int i = 0; i < abcissas.Length; i++)
|
{
|
midpointsum += weights[i] * (f((linearSlope * abcissas[i]) + linearOffset) + f(-(linearSlope * abcissas[i]) + linearOffset));
|
}
|
|
midpointsum *= step;
|
sum = 0.5 * (sum + midpointsum);
|
step *= 0.5;
|
|
double delta = Complex.Abs(sum - midpointsum);
|
|
if (level == 1)
|
{
|
previousDelta = delta;
|
continue;
|
}
|
|
double r = Math.Log(delta) / Math.Log(previousDelta);
|
previousDelta = delta;
|
|
if (r > 1.9 && r < 2.1)
|
{
|
// convergence region
|
delta = Math.Sqrt(delta);
|
}
|
|
if (sum.Real.AlmostEqualNormRelative(midpointsum.Real, delta, targetRelativeError)
|
&& sum.Imaginary.AlmostEqualNormRelative(midpointsum.Imaginary, delta, targetRelativeError))
|
{
|
break;
|
}
|
}
|
|
return sum * linearSlope;
|
}
|
}
|
}
|
}
|