// <copyright file="UserEvd.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
|
namespace IStation.Numerics.LinearAlgebra.Complex.Factorization
|
{
|
using Complex = System.Numerics.Complex;
|
|
/// <summary>
|
/// Eigenvalues and eigenvectors of a complex matrix.
|
/// </summary>
|
/// <remarks>
|
/// If A is Hermitian, then A = V*D*V' where the eigenvalue matrix D is
|
/// diagonal and the eigenvector matrix V is Hermitian.
|
/// I.e. A = V*D*V' and V*VH=I.
|
/// If A is not symmetric, then the eigenvalue matrix D is block diagonal
|
/// with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
|
/// lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
|
/// columns of V represent the eigenvectors in the sense that A*V = V*D,
|
/// i.e. A.Multiply(V) equals V.Multiply(D). The matrix V may be badly
|
/// conditioned, or even singular, so the validity of the equation
|
/// A = V*D*Inverse(V) depends upon V.Condition().
|
/// </remarks>
|
internal sealed class UserEvd : Evd
|
{
|
/// <summary>
|
/// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
|
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
|
/// </summary>
|
/// <param name="matrix">The matrix to factor.</param>
|
/// <param name="symmetricity">If it is known whether the matrix is symmetric or not the routine can skip checking it itself.</param>
|
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
|
/// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
|
public static UserEvd Create(Matrix<Complex> matrix, Symmetricity symmetricity)
|
{
|
if (matrix.RowCount != matrix.ColumnCount)
|
{
|
throw new ArgumentException("Matrix must be square.");
|
}
|
|
var order = matrix.RowCount;
|
|
// Initialize matrices for eigenvalues and eigenvectors
|
var eigenVectors = DenseMatrix.CreateIdentity(order);
|
var blockDiagonal = Matrix<Complex>.Build.SameAs(matrix, order, order);
|
var eigenValues = new DenseVector(order);
|
|
bool isSymmetric;
|
switch (symmetricity)
|
{
|
case Symmetricity.Hermitian:
|
isSymmetric = true;
|
break;
|
case Symmetricity.Asymmetric:
|
isSymmetric = false;
|
break;
|
default:
|
isSymmetric = matrix.IsHermitian();
|
break;
|
}
|
|
if (isSymmetric)
|
{
|
var matrixCopy = matrix.ToArray();
|
var tau = new Complex[order];
|
var d = new double[order];
|
var e = new double[order];
|
|
SymmetricTridiagonalize(matrixCopy, d, e, tau, order);
|
SymmetricDiagonalize(eigenVectors, d, e, order);
|
SymmetricUntridiagonalize(eigenVectors, matrixCopy, tau, order);
|
|
for (var i = 0; i < order; i++)
|
{
|
eigenValues[i] = new Complex(d[i], e[i]);
|
}
|
}
|
else
|
{
|
var matrixH = matrix.ToArray();
|
NonsymmetricReduceToHessenberg(eigenVectors, matrixH, order);
|
NonsymmetricReduceHessenberToRealSchur(eigenVectors, eigenValues, matrixH, order);
|
}
|
|
blockDiagonal.SetDiagonal(eigenValues);
|
|
return new UserEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
|
}
|
|
UserEvd(Matrix<Complex> eigenVectors, Vector<Complex> eigenValues, Matrix<Complex> blockDiagonal, bool isSymmetric)
|
: base(eigenVectors, eigenValues, blockDiagonal, isSymmetric)
|
{
|
}
|
|
/// <summary>
|
/// Reduces a complex Hermitian matrix to a real symmetric tridiagonal matrix using unitary similarity transformations.
|
/// </summary>
|
/// <param name="matrixA">Source matrix to reduce</param>
|
/// <param name="d">Output: Arrays for internal storage of real parts of eigenvalues</param>
|
/// <param name="e">Output: Arrays for internal storage of imaginary parts of eigenvalues</param>
|
/// <param name="tau">Output: Arrays that contains further information about the transformations.</param>
|
/// <param name="order">Order of initial matrix</param>
|
/// <remarks>This is derived from the Algol procedures HTRIDI by
|
/// Smith, Boyle, Dongarra, Garbow, Ikebe, Klema, Moler, and Wilkinson, Handbook for
|
/// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
/// Fortran subroutine in EISPACK.</remarks>
|
static void SymmetricTridiagonalize(Complex[,] matrixA, double[] d, double[] e, Complex[] tau, int order)
|
{
|
double hh;
|
tau[order - 1] = Complex.One;
|
|
for (var i = 0; i < order; i++)
|
{
|
d[i] = matrixA[i, i].Real;
|
}
|
|
// Householder reduction to tridiagonal form.
|
for (var i = order - 1; i > 0; i--)
|
{
|
// Scale to avoid under/overflow.
|
var scale = 0.0;
|
var h = 0.0;
|
|
for (var k = 0; k < i; k++)
|
{
|
scale = scale + Math.Abs(matrixA[i, k].Real) + Math.Abs(matrixA[i, k].Imaginary);
|
}
|
|
if (scale == 0.0)
|
{
|
tau[i - 1] = Complex.One;
|
e[i] = 0.0;
|
}
|
else
|
{
|
for (var k = 0; k < i; k++)
|
{
|
matrixA[i, k] /= scale;
|
h += matrixA[i, k].MagnitudeSquared();
|
}
|
|
Complex g = Math.Sqrt(h);
|
e[i] = scale*g.Real;
|
|
Complex temp;
|
var f = matrixA[i, i - 1];
|
if (f.Magnitude != 0)
|
{
|
temp = -(matrixA[i, i - 1].Conjugate()*tau[i].Conjugate())/f.Magnitude;
|
h += f.Magnitude*g.Real;
|
g = 1.0 + (g/f.Magnitude);
|
matrixA[i, i - 1] *= g;
|
}
|
else
|
{
|
temp = -tau[i].Conjugate();
|
matrixA[i, i - 1] = g;
|
}
|
|
if ((f.Magnitude == 0) || (i != 1))
|
{
|
f = Complex.Zero;
|
for (var j = 0; j < i; j++)
|
{
|
var tmp = Complex.Zero;
|
|
// Form element of A*U.
|
for (var k = 0; k <= j; k++)
|
{
|
tmp += matrixA[j, k]*matrixA[i, k].Conjugate();
|
}
|
|
for (var k = j + 1; k <= i - 1; k++)
|
{
|
tmp += matrixA[k, j].Conjugate()*matrixA[i, k].Conjugate();
|
}
|
|
// Form element of P
|
tau[j] = tmp/h;
|
f += (tmp/h)*matrixA[i, j];
|
}
|
|
hh = f.Real/(h + h);
|
|
// Form the reduced A.
|
for (var j = 0; j < i; j++)
|
{
|
f = matrixA[i, j].Conjugate();
|
g = tau[j] - (hh*f);
|
tau[j] = g.Conjugate();
|
|
for (var k = 0; k <= j; k++)
|
{
|
matrixA[j, k] -= (f*tau[k]) + (g*matrixA[i, k]);
|
}
|
}
|
}
|
|
for (var k = 0; k < i; k++)
|
{
|
matrixA[i, k] *= scale;
|
}
|
|
tau[i - 1] = temp.Conjugate();
|
}
|
|
hh = d[i];
|
d[i] = matrixA[i, i].Real;
|
matrixA[i, i] = new Complex(hh, scale*Math.Sqrt(h));
|
}
|
|
hh = d[0];
|
d[0] = matrixA[0, 0].Real;
|
matrixA[0, 0] = hh;
|
e[0] = 0.0;
|
}
|
|
/// <summary>
|
/// Symmetric tridiagonal QL algorithm.
|
/// </summary>
|
/// <param name="eigenVectors">The eigen vectors to work on.</param>
|
/// <param name="d">Arrays for internal storage of real parts of eigenvalues</param>
|
/// <param name="e">Arrays for internal storage of imaginary parts of eigenvalues</param>
|
/// <param name="order">Order of initial matrix</param>
|
/// <remarks>This is derived from the Algol procedures tql2, by
|
/// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
/// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
/// Fortran subroutine in EISPACK.</remarks>
|
/// <exception cref="NonConvergenceException"></exception>
|
static void SymmetricDiagonalize(Matrix<Complex> eigenVectors, double[] d, double[] e, int order)
|
{
|
const int maxiter = 1000;
|
|
for (var i = 1; i < order; i++)
|
{
|
e[i - 1] = e[i];
|
}
|
|
e[order - 1] = 0.0;
|
|
var f = 0.0;
|
var tst1 = 0.0;
|
var eps = Precision.DoublePrecision;
|
for (var l = 0; l < order; l++)
|
{
|
// Find small subdiagonal element
|
tst1 = Math.Max(tst1, Math.Abs(d[l]) + Math.Abs(e[l]));
|
var m = l;
|
while (m < order)
|
{
|
if (Math.Abs(e[m]) <= eps*tst1)
|
{
|
break;
|
}
|
|
m++;
|
}
|
|
// If m == l, d[l] is an eigenvalue,
|
// otherwise, iterate.
|
if (m > l)
|
{
|
var iter = 0;
|
do
|
{
|
iter = iter + 1; // (Could check iteration count here.)
|
|
// Compute implicit shift
|
var g = d[l];
|
var p = (d[l + 1] - g)/(2.0*e[l]);
|
var r = SpecialFunctions.Hypotenuse(p, 1.0);
|
if (p < 0)
|
{
|
r = -r;
|
}
|
|
d[l] = e[l]/(p + r);
|
d[l + 1] = e[l]*(p + r);
|
|
var dl1 = d[l + 1];
|
var h = g - d[l];
|
for (var i = l + 2; i < order; i++)
|
{
|
d[i] -= h;
|
}
|
|
f = f + h;
|
|
// Implicit QL transformation.
|
p = d[m];
|
var c = 1.0;
|
var c2 = c;
|
var c3 = c;
|
var el1 = e[l + 1];
|
var s = 0.0;
|
var s2 = 0.0;
|
for (var i = m - 1; i >= l; i--)
|
{
|
c3 = c2;
|
c2 = c;
|
s2 = s;
|
g = c*e[i];
|
h = c*p;
|
r = SpecialFunctions.Hypotenuse(p, e[i]);
|
e[i + 1] = s*r;
|
s = e[i]/r;
|
c = p/r;
|
p = (c*d[i]) - (s*g);
|
d[i + 1] = h + (s*((c*g) + (s*d[i])));
|
|
// Accumulate transformation.
|
for (var k = 0; k < order; k++)
|
{
|
h = eigenVectors.At(k, i + 1).Real;
|
eigenVectors.At(k, i + 1, (s*eigenVectors.At(k, i).Real) + (c*h));
|
eigenVectors.At(k, i, (c*eigenVectors.At(k, i).Real) - (s*h));
|
}
|
}
|
|
p = (-s)*s2*c3*el1*e[l]/dl1;
|
e[l] = s*p;
|
d[l] = c*p;
|
|
// Check for convergence. If too many iterations have been performed,
|
// throw exception that Convergence Failed
|
if (iter >= maxiter)
|
{
|
throw new NonConvergenceException();
|
}
|
} while (Math.Abs(e[l]) > eps*tst1);
|
}
|
|
d[l] = d[l] + f;
|
e[l] = 0.0;
|
}
|
|
// Sort eigenvalues and corresponding vectors.
|
for (var i = 0; i < order - 1; i++)
|
{
|
var k = i;
|
var p = d[i];
|
for (var j = i + 1; j < order; j++)
|
{
|
if (d[j] < p)
|
{
|
k = j;
|
p = d[j];
|
}
|
}
|
|
if (k != i)
|
{
|
d[k] = d[i];
|
d[i] = p;
|
for (var j = 0; j < order; j++)
|
{
|
p = eigenVectors.At(j, i).Real;
|
eigenVectors.At(j, i, eigenVectors.At(j, k));
|
eigenVectors.At(j, k, p);
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Determines eigenvectors by undoing the symmetric tridiagonalize transformation
|
/// </summary>
|
/// <param name="eigenVectors">The eigen vectors to work on.</param>
|
/// <param name="matrixA">Previously tridiagonalized matrix by <see cref="SymmetricTridiagonalize"/>.</param>
|
/// <param name="tau">Contains further information about the transformations</param>
|
/// <param name="order">Input matrix order</param>
|
/// <remarks>This is derived from the Algol procedures HTRIBK, by
|
/// by Smith, Boyle, Dongarra, Garbow, Ikebe, Klema, Moler, and Wilkinson, Handbook for
|
/// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
/// Fortran subroutine in EISPACK.</remarks>
|
static void SymmetricUntridiagonalize(Matrix<Complex> eigenVectors, Complex[,] matrixA, Complex[] tau, int order)
|
{
|
for (var i = 0; i < order; i++)
|
{
|
for (var j = 0; j < order; j++)
|
{
|
eigenVectors.At(i, j, eigenVectors.At(i, j).Real*tau[i].Conjugate());
|
}
|
}
|
|
// Recover and apply the Householder matrices.
|
for (var i = 1; i < order; i++)
|
{
|
var h = matrixA[i, i].Imaginary;
|
if (h != 0)
|
{
|
for (var j = 0; j < order; j++)
|
{
|
var s = Complex.Zero;
|
for (var k = 0; k < i; k++)
|
{
|
s += eigenVectors.At(k, j)*matrixA[i, k];
|
}
|
|
s = (s/h)/h;
|
|
for (var k = 0; k < i; k++)
|
{
|
eigenVectors.At(k, j, eigenVectors.At(k, j) - s*matrixA[i, k].Conjugate());
|
}
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Nonsymmetric reduction to Hessenberg form.
|
/// </summary>
|
/// <param name="eigenVectors">The eigen vectors to work on.</param>
|
/// <param name="matrixH">Array for internal storage of nonsymmetric Hessenberg form.</param>
|
/// <param name="order">Order of initial matrix</param>
|
/// <remarks>This is derived from the Algol procedures orthes and ortran,
|
/// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
/// Vol.ii-Linear Algebra, and the corresponding
|
/// Fortran subroutines in EISPACK.</remarks>
|
static void NonsymmetricReduceToHessenberg(Matrix<Complex> eigenVectors, Complex[,] matrixH, int order)
|
{
|
var ort = new Complex[order];
|
|
for (var m = 1; m < order - 1; m++)
|
{
|
// Scale column.
|
var scale = 0.0;
|
for (var i = m; i < order; i++)
|
{
|
scale += Math.Abs(matrixH[i, m - 1].Real) + Math.Abs(matrixH[i, m - 1].Imaginary);
|
}
|
|
if (scale != 0.0)
|
{
|
// Compute Householder transformation.
|
var h = 0.0;
|
for (var i = order - 1; i >= m; i--)
|
{
|
ort[i] = matrixH[i, m - 1]/scale;
|
h += ort[i].MagnitudeSquared();
|
}
|
|
var g = Math.Sqrt(h);
|
if (ort[m].Magnitude != 0)
|
{
|
h = h + (ort[m].Magnitude*g);
|
g /= ort[m].Magnitude;
|
ort[m] = (1.0 + g)*ort[m];
|
}
|
else
|
{
|
ort[m] = g;
|
matrixH[m, m - 1] = scale;
|
}
|
|
// Apply Householder similarity transformation
|
// H = (I-u*u'/h)*H*(I-u*u')/h)
|
for (var j = m; j < order; j++)
|
{
|
var f = Complex.Zero;
|
for (var i = order - 1; i >= m; i--)
|
{
|
f += ort[i].Conjugate()*matrixH[i, j];
|
}
|
|
f = f/h;
|
for (var i = m; i < order; i++)
|
{
|
matrixH[i, j] -= f*ort[i];
|
}
|
}
|
|
for (var i = 0; i < order; i++)
|
{
|
var f = Complex.Zero;
|
for (var j = order - 1; j >= m; j--)
|
{
|
f += ort[j]*matrixH[i, j];
|
}
|
|
f = f/h;
|
for (var j = m; j < order; j++)
|
{
|
matrixH[i, j] -= f*ort[j].Conjugate();
|
}
|
}
|
|
ort[m] = scale*ort[m];
|
matrixH[m, m - 1] *= -g;
|
}
|
}
|
|
// Accumulate transformations (Algol's ortran).
|
for (var i = 0; i < order; i++)
|
{
|
for (var j = 0; j < order; j++)
|
{
|
eigenVectors.At(i, j, i == j ? Complex.One : Complex.Zero);
|
}
|
}
|
|
for (var m = order - 2; m >= 1; m--)
|
{
|
if (matrixH[m, m - 1] != Complex.Zero && ort[m] != Complex.Zero)
|
{
|
var norm = (matrixH[m, m - 1].Real*ort[m].Real) + (matrixH[m, m - 1].Imaginary*ort[m].Imaginary);
|
|
for (var i = m + 1; i < order; i++)
|
{
|
ort[i] = matrixH[i, m - 1];
|
}
|
|
for (var j = m; j < order; j++)
|
{
|
var g = Complex.Zero;
|
for (var i = m; i < order; i++)
|
{
|
g += ort[i].Conjugate()*eigenVectors.At(i, j);
|
}
|
|
// Double division avoids possible underflow
|
g /= norm;
|
for (var i = m; i < order; i++)
|
{
|
eigenVectors.At(i, j, eigenVectors.At(i, j) + g*ort[i]);
|
}
|
}
|
}
|
}
|
|
// Create real subdiagonal elements.
|
for (var i = 1; i < order; i++)
|
{
|
if (matrixH[i, i - 1].Imaginary != 0.0)
|
{
|
var y = matrixH[i, i - 1]/matrixH[i, i - 1].Magnitude;
|
matrixH[i, i - 1] = matrixH[i, i - 1].Magnitude;
|
for (var j = i; j < order; j++)
|
{
|
matrixH[i, j] *= y.Conjugate();
|
}
|
|
for (var j = 0; j <= Math.Min(i + 1, order - 1); j++)
|
{
|
matrixH[j, i] *= y;
|
}
|
|
for (var j = 0; j < order; j++)
|
{
|
eigenVectors.At(j, i, eigenVectors.At(j, i)*y);
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Nonsymmetric reduction from Hessenberg to real Schur form.
|
/// </summary>
|
/// <param name="eigenVectors">The eigen vectors to work on.</param>
|
/// <param name="eigenValues">The eigen values to work on.</param>
|
/// <param name="matrixH">Array for internal storage of nonsymmetric Hessenberg form.</param>
|
/// <param name="order">Order of initial matrix</param>
|
/// <remarks>This is derived from the Algol procedure hqr2,
|
/// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
/// Vol.ii-Linear Algebra, and the corresponding
|
/// Fortran subroutine in EISPACK.</remarks>
|
static void NonsymmetricReduceHessenberToRealSchur(Matrix<Complex> eigenVectors, Vector<Complex> eigenValues, Complex[,] matrixH, int order)
|
{
|
// Initialize
|
var n = order - 1;
|
var eps = Precision.DoublePrecision;
|
|
double norm;
|
Complex x, y, z, exshift = Complex.Zero;
|
|
// Outer loop over eigenvalue index
|
var iter = 0;
|
while (n >= 0)
|
{
|
// Look for single small sub-diagonal element
|
var l = n;
|
while (l > 0)
|
{
|
var tst1 = Math.Abs(matrixH[l - 1, l - 1].Real) + Math.Abs(matrixH[l - 1, l - 1].Imaginary) + Math.Abs(matrixH[l, l].Real) + Math.Abs(matrixH[l, l].Imaginary);
|
if (Math.Abs(matrixH[l, l - 1].Real) < eps*tst1)
|
{
|
break;
|
}
|
|
l--;
|
}
|
|
// Check for convergence
|
// One root found
|
if (l == n)
|
{
|
matrixH[n, n] += exshift;
|
eigenValues[n] = matrixH[n, n];
|
n--;
|
iter = 0;
|
}
|
else
|
{
|
// Form shift
|
Complex s;
|
if (iter != 10 && iter != 20)
|
{
|
s = matrixH[n, n];
|
x = matrixH[n - 1, n]*matrixH[n, n - 1].Real;
|
|
if (x.Real != 0.0 || x.Imaginary != 0.0)
|
{
|
y = (matrixH[n - 1, n - 1] - s)/2.0;
|
z = ((y*y) + x).SquareRoot();
|
if ((y.Real*z.Real) + (y.Imaginary*z.Imaginary) < 0.0)
|
{
|
z *= -1.0;
|
}
|
|
x /= y + z;
|
s = s - x;
|
}
|
}
|
else
|
{
|
// Form exceptional shift
|
s = Math.Abs(matrixH[n, n - 1].Real) + Math.Abs(matrixH[n - 1, n - 2].Real);
|
}
|
|
for (var i = 0; i <= n; i++)
|
{
|
matrixH[i, i] -= s;
|
}
|
|
exshift += s;
|
iter++;
|
|
// Reduce to triangle (rows)
|
for (var i = l + 1; i <= n; i++)
|
{
|
s = matrixH[i, i - 1].Real;
|
norm = SpecialFunctions.Hypotenuse(matrixH[i - 1, i - 1].Magnitude, s.Real);
|
x = matrixH[i - 1, i - 1]/norm;
|
eigenValues[i - 1] = x;
|
matrixH[i - 1, i - 1] = norm;
|
matrixH[i, i - 1] = new Complex(0.0, s.Real/norm);
|
|
for (var j = i; j < order; j++)
|
{
|
y = matrixH[i - 1, j];
|
z = matrixH[i, j];
|
matrixH[i - 1, j] = (x.Conjugate()*y) + (matrixH[i, i - 1].Imaginary*z);
|
matrixH[i, j] = (x*z) - (matrixH[i, i - 1].Imaginary*y);
|
}
|
}
|
|
s = matrixH[n, n];
|
if (s.Imaginary != 0.0)
|
{
|
s /= matrixH[n, n].Magnitude;
|
matrixH[n, n] = matrixH[n, n].Magnitude;
|
|
for (var j = n + 1; j < order; j++)
|
{
|
matrixH[n, j] *= s.Conjugate();
|
}
|
}
|
|
// Inverse operation (columns).
|
for (var j = l + 1; j <= n; j++)
|
{
|
x = eigenValues[j - 1];
|
for (var i = 0; i <= j; i++)
|
{
|
z = matrixH[i, j];
|
if (i != j)
|
{
|
y = matrixH[i, j - 1];
|
matrixH[i, j - 1] = (x*y) + (matrixH[j, j - 1].Imaginary*z);
|
}
|
else
|
{
|
y = matrixH[i, j - 1].Real;
|
matrixH[i, j - 1] = new Complex((x.Real*y.Real) - (x.Imaginary*y.Imaginary) + (matrixH[j, j - 1].Imaginary*z.Real), matrixH[i, j - 1].Imaginary);
|
}
|
|
matrixH[i, j] = (x.Conjugate()*z) - (matrixH[j, j - 1].Imaginary*y);
|
}
|
|
for (var i = 0; i < order; i++)
|
{
|
y = eigenVectors.At(i, j - 1);
|
z = eigenVectors.At(i, j);
|
eigenVectors.At(i, j - 1, (x*y) + (matrixH[j, j - 1].Imaginary*z));
|
eigenVectors.At(i, j, (x.Conjugate()*z) - (matrixH[j, j - 1].Imaginary*y));
|
}
|
}
|
|
if (s.Imaginary != 0.0)
|
{
|
for (var i = 0; i <= n; i++)
|
{
|
matrixH[i, n] *= s;
|
}
|
|
for (var i = 0; i < order; i++)
|
{
|
eigenVectors.At(i, n, eigenVectors.At(i, n)*s);
|
}
|
}
|
}
|
}
|
|
// All roots found.
|
// Backsubstitute to find vectors of upper triangular form
|
norm = 0.0;
|
for (var i = 0; i < order; i++)
|
{
|
for (var j = i; j < order; j++)
|
{
|
norm = Math.Max(norm, Math.Abs(matrixH[i, j].Real) + Math.Abs(matrixH[i, j].Imaginary));
|
}
|
}
|
|
if (order == 1)
|
{
|
return;
|
}
|
|
if (norm == 0.0)
|
{
|
return;
|
}
|
|
for (n = order - 1; n > 0; n--)
|
{
|
x = eigenValues[n];
|
matrixH[n, n] = 1.0;
|
|
for (var i = n - 1; i >= 0; i--)
|
{
|
z = 0.0;
|
for (var j = i + 1; j <= n; j++)
|
{
|
z += matrixH[i, j]*matrixH[j, n];
|
}
|
|
y = x - eigenValues[i];
|
if (y.Real == 0.0 && y.Imaginary == 0.0)
|
{
|
y = eps*norm;
|
}
|
|
matrixH[i, n] = z/y;
|
|
// Overflow control
|
var tr = Math.Abs(matrixH[i, n].Real) + Math.Abs(matrixH[i, n].Imaginary);
|
if ((eps*tr)*tr > 1)
|
{
|
for (var j = i; j <= n; j++)
|
{
|
matrixH[j, n] = matrixH[j, n]/tr;
|
}
|
}
|
}
|
}
|
|
// Back transformation to get eigenvectors of original matrix
|
for (var j = order - 1; j > 0; j--)
|
{
|
for (var i = 0; i < order; i++)
|
{
|
z = Complex.Zero;
|
for (var k = 0; k <= j; k++)
|
{
|
z += eigenVectors.At(i, k)*matrixH[k, j];
|
}
|
|
eigenVectors.At(i, j, z);
|
}
|
}
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>AX = B</b>, with A SVD factorized.
|
/// </summary>
|
/// <param name="input">The right hand side <see cref="Matrix{T}"/>, <b>B</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>X</b>.</param>
|
public override void Solve(Matrix<Complex> input, Matrix<Complex> result)
|
{
|
// The solution X should have the same number of columns as B
|
if (input.ColumnCount != result.ColumnCount)
|
{
|
throw new ArgumentException("Matrix column dimensions must agree.");
|
}
|
|
// The dimension compatibility conditions for X = A\B require the two matrices A and B to have the same number of rows
|
if (EigenValues.Count != input.RowCount)
|
{
|
throw new ArgumentException("Matrix row dimensions must agree.");
|
}
|
|
// The solution X row dimension is equal to the column dimension of A
|
if (EigenValues.Count != result.RowCount)
|
{
|
throw new ArgumentException("Matrix column dimensions must agree.");
|
}
|
|
if (IsSymmetric)
|
{
|
var order = EigenValues.Count;
|
var tmp = new Complex[order];
|
|
for (var k = 0; k < order; k++)
|
{
|
for (var j = 0; j < order; j++)
|
{
|
Complex value = 0.0;
|
if (j < order)
|
{
|
for (var i = 0; i < order; i++)
|
{
|
value += EigenVectors.At(i, j).Conjugate()*input.At(i, k);
|
}
|
|
value /= EigenValues[j].Real;
|
}
|
|
tmp[j] = value;
|
}
|
|
for (var j = 0; j < order; j++)
|
{
|
Complex value = 0.0;
|
for (var i = 0; i < order; i++)
|
{
|
value += EigenVectors.At(j, i)*tmp[i];
|
}
|
|
result.At(j, k, value);
|
}
|
}
|
}
|
else
|
{
|
throw new ArgumentException("Matrix must be symmetric.");
|
}
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>Ax = b</b>, with A EVD factorized.
|
/// </summary>
|
/// <param name="input">The right hand side vector, <b>b</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>x</b>.</param>
|
public override void Solve(Vector<Complex> input, Vector<Complex> result)
|
{
|
// Ax=b where A is an m x m matrix
|
// Check that b is a column vector with m entries
|
if (EigenValues.Count != input.Count)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
// Check that x is a column vector with n entries
|
if (EigenValues.Count != result.Count)
|
{
|
throw Matrix.DimensionsDontMatch<ArgumentException>(EigenValues, result);
|
}
|
|
if (IsSymmetric)
|
{
|
// Symmetric case -> x = V * inv(λ) * VH * b;
|
var order = EigenValues.Count;
|
var tmp = new Complex[order];
|
Complex value;
|
|
for (var j = 0; j < order; j++)
|
{
|
value = 0;
|
if (j < order)
|
{
|
for (var i = 0; i < order; i++)
|
{
|
value += EigenVectors.At(i, j).Conjugate()*input[i];
|
}
|
|
value /= EigenValues[j].Real;
|
}
|
|
tmp[j] = value;
|
}
|
|
for (var j = 0; j < order; j++)
|
{
|
value = 0;
|
for (int i = 0; i < order; i++)
|
{
|
value += EigenVectors.At(j, i)*tmp[i];
|
}
|
|
result[j] = value;
|
}
|
}
|
else
|
{
|
throw new ArgumentException("Matrix must be symmetric.");
|
}
|
}
|
}
|
}
|