// <copyright file="UserQR.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Linq;
|
using IStation.Numerics.LinearAlgebra.Factorization;
|
using IStation.Numerics.Threading;
|
|
namespace IStation.Numerics.LinearAlgebra.Complex.Factorization
|
{
|
using Complex = System.Numerics.Complex;
|
|
/// <summary>
|
/// <para>A class which encapsulates the functionality of the QR decomposition.</para>
|
/// <para>Any real square matrix A may be decomposed as A = QR where Q is an orthogonal matrix
|
/// (its columns are orthogonal unit vectors meaning QTQ = I) and R is an upper triangular matrix
|
/// (also called right triangular matrix).</para>
|
/// </summary>
|
/// <remarks>
|
/// The computation of the QR decomposition is done at construction time by Householder transformation.
|
/// </remarks>
|
internal sealed class UserQR : QR
|
{
|
/// <summary>
|
/// Initializes a new instance of the <see cref="UserQR"/> class. This object will compute the
|
/// QR factorization when the constructor is called and cache it's factorization.
|
/// </summary>
|
/// <param name="matrix">The matrix to factor.</param>
|
/// <param name="method">The QR factorization method to use.</param>
|
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
|
public static UserQR Create(Matrix<Complex> matrix, QRMethod method = QRMethod.Full)
|
{
|
if (matrix.RowCount < matrix.ColumnCount)
|
{
|
throw Matrix.DimensionsDontMatch<ArgumentException>(matrix);
|
}
|
|
Matrix<Complex> q;
|
Matrix<Complex> r;
|
|
var minmn = Math.Min(matrix.RowCount, matrix.ColumnCount);
|
var u = new Complex[minmn][];
|
|
if (method == QRMethod.Full)
|
{
|
r = matrix.Clone();
|
q = Matrix<Complex>.Build.SameAs(matrix, matrix.RowCount, matrix.RowCount, fullyMutable: true);
|
|
for (var i = 0; i < matrix.RowCount; i++)
|
{
|
q.At(i, i, 1.0f);
|
}
|
|
for (var i = 0; i < minmn; i++)
|
{
|
u[i] = GenerateColumn(r, i, i);
|
ComputeQR(u[i], r, i, matrix.RowCount, i + 1, matrix.ColumnCount, Control.MaxDegreeOfParallelism);
|
}
|
|
for (var i = minmn - 1; i >= 0; i--)
|
{
|
ComputeQR(u[i], q, i, matrix.RowCount, i, matrix.RowCount, Control.MaxDegreeOfParallelism);
|
}
|
}
|
else
|
{
|
q = matrix.Clone();
|
|
for (var i = 0; i < minmn; i++)
|
{
|
u[i] = GenerateColumn(q, i, i);
|
ComputeQR(u[i], q, i, matrix.RowCount, i + 1, matrix.ColumnCount, Control.MaxDegreeOfParallelism);
|
}
|
|
r = q.SubMatrix(0, matrix.ColumnCount, 0, matrix.ColumnCount);
|
q.Clear();
|
|
for (var i = 0; i < matrix.ColumnCount; i++)
|
{
|
q.At(i, i, 1.0f);
|
}
|
|
for (var i = minmn - 1; i >= 0; i--)
|
{
|
ComputeQR(u[i], q, i, matrix.RowCount, i, matrix.ColumnCount, Control.MaxDegreeOfParallelism);
|
}
|
}
|
|
return new UserQR(q, r, method);
|
}
|
|
UserQR(Matrix<Complex> q, Matrix<Complex> rFull, QRMethod method)
|
: base(q, rFull, method)
|
{
|
}
|
|
/// <summary>
|
/// Generate column from initial matrix to work array
|
/// </summary>
|
/// <param name="a">Initial matrix</param>
|
/// <param name="row">The first row</param>
|
/// <param name="column">Column index</param>
|
/// <returns>Generated vector</returns>
|
static Complex[] GenerateColumn(Matrix<Complex> a, int row, int column)
|
{
|
var ru = a.RowCount - row;
|
var u = new Complex[ru];
|
|
for (var i = row; i < a.RowCount; i++)
|
{
|
u[i - row] = a.At(i, column);
|
a.At(i, column, 0.0);
|
}
|
|
var norm = u.Aggregate(Complex.Zero, (current, t) => current + (t.Magnitude*t.Magnitude));
|
norm = norm.SquareRoot();
|
|
if (row == a.RowCount - 1 || norm.Magnitude == 0)
|
{
|
a.At(row, column, -u[0]);
|
u[0] = Constants.Sqrt2;
|
return u;
|
}
|
|
if (u[0].Magnitude != 0.0)
|
{
|
norm = norm.Magnitude*(u[0]/u[0].Magnitude);
|
}
|
|
a.At(row, column, -norm);
|
|
for (var i = 0; i < ru; i++)
|
{
|
u[i] /= norm;
|
}
|
|
u[0] += 1.0;
|
|
var s = (1.0/u[0]).SquareRoot();
|
for (var i = 0; i < ru; i++)
|
{
|
u[i] = u[i].Conjugate()*s;
|
}
|
|
return u;
|
}
|
|
/// <summary>
|
/// Perform calculation of Q or R
|
/// </summary>
|
/// <param name="u">Work array</param>
|
/// <param name="a">Q or R matrices</param>
|
/// <param name="rowStart">The first row</param>
|
/// <param name="rowDim">The last row</param>
|
/// <param name="columnStart">The first column</param>
|
/// <param name="columnDim">The last column</param>
|
/// <param name="availableCores">Number of available CPUs</param>
|
static void ComputeQR(Complex[] u, Matrix<Complex> a, int rowStart, int rowDim, int columnStart, int columnDim, int availableCores)
|
{
|
if (rowDim < rowStart || columnDim < columnStart)
|
{
|
return;
|
}
|
|
var tmpColCount = columnDim - columnStart;
|
|
if ((availableCores > 1) && (tmpColCount > 200))
|
{
|
var tmpSplit = columnStart + (tmpColCount/2);
|
var tmpCores = availableCores/2;
|
|
CommonParallel.Invoke(
|
() => ComputeQR(u, a, rowStart, rowDim, columnStart, tmpSplit, tmpCores),
|
() => ComputeQR(u, a, rowStart, rowDim, tmpSplit, columnDim, tmpCores));
|
}
|
else
|
{
|
for (var j = columnStart; j < columnDim; j++)
|
{
|
var scale = Complex.Zero;
|
for (var i = rowStart; i < rowDim; i++)
|
{
|
scale += u[i - rowStart]*a.At(i, j);
|
}
|
|
for (var i = rowStart; i < rowDim; i++)
|
{
|
a.At(i, j, a.At(i, j) - (u[i - rowStart].Conjugate()*scale));
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>AX = B</b>, with A QR factorized.
|
/// </summary>
|
/// <param name="input">The right hand side <see cref="Matrix{T}"/>, <b>B</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>X</b>.</param>
|
public override void Solve(Matrix<Complex> input, Matrix<Complex> result)
|
{
|
// The solution X should have the same number of columns as B
|
if (input.ColumnCount != result.ColumnCount)
|
{
|
throw new ArgumentException("Matrix column dimensions must agree.");
|
}
|
|
// The dimension compatibility conditions for X = A\B require the two matrices A and B to have the same number of rows
|
if (FullR.RowCount != input.RowCount)
|
{
|
throw new ArgumentException("Matrix row dimensions must agree.");
|
}
|
|
// The solution X row dimension is equal to the column dimension of A
|
if (FullR.ColumnCount != result.RowCount)
|
{
|
throw new ArgumentException("Matrix column dimensions must agree.");
|
}
|
|
var inputCopy = input.Clone();
|
|
// Compute Y = transpose(Q)*B
|
var column = new Complex[FullR.RowCount];
|
for (var j = 0; j < input.ColumnCount; j++)
|
{
|
for (var k = 0; k < FullR.RowCount; k++)
|
{
|
column[k] = inputCopy.At(k, j);
|
}
|
|
for (var i = 0; i < FullR.RowCount; i++)
|
{
|
var s = Complex.Zero;
|
for (var k = 0; k < FullR.RowCount; k++)
|
{
|
s += Q.At(k, i).Conjugate()*column[k];
|
}
|
|
inputCopy.At(i, j, s);
|
}
|
}
|
|
// Solve R*X = Y;
|
for (var k = FullR.ColumnCount - 1; k >= 0; k--)
|
{
|
for (var j = 0; j < input.ColumnCount; j++)
|
{
|
inputCopy.At(k, j, inputCopy.At(k, j)/FullR.At(k, k));
|
}
|
|
for (var i = 0; i < k; i++)
|
{
|
for (var j = 0; j < input.ColumnCount; j++)
|
{
|
inputCopy.At(i, j, inputCopy.At(i, j) - (inputCopy.At(k, j)*FullR.At(i, k)));
|
}
|
}
|
}
|
|
for (var i = 0; i < FullR.ColumnCount; i++)
|
{
|
for (var j = 0; j < inputCopy.ColumnCount; j++)
|
{
|
result.At(i, j, inputCopy.At(i, j));
|
}
|
}
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>Ax = b</b>, with A QR factorized.
|
/// </summary>
|
/// <param name="input">The right hand side vector, <b>b</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>x</b>.</param>
|
public override void Solve(Vector<Complex> input, Vector<Complex> result)
|
{
|
// Ax=b where A is an m x n matrix
|
// Check that b is a column vector with m entries
|
if (FullR.RowCount != input.Count)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
// Check that x is a column vector with n entries
|
if (FullR.ColumnCount != result.Count)
|
{
|
throw Matrix.DimensionsDontMatch<ArgumentException>(FullR, result);
|
}
|
|
var inputCopy = input.Clone();
|
|
// Compute Y = transpose(Q)*B
|
var column = new Complex[FullR.RowCount];
|
for (var k = 0; k < FullR.RowCount; k++)
|
{
|
column[k] = inputCopy[k];
|
}
|
|
for (var i = 0; i < FullR.RowCount; i++)
|
{
|
var s = Complex.Zero;
|
for (var k = 0; k < FullR.RowCount; k++)
|
{
|
s += Q.At(k, i).Conjugate()*column[k];
|
}
|
|
inputCopy[i] = s;
|
}
|
|
// Solve R*X = Y;
|
for (var k = FullR.ColumnCount - 1; k >= 0; k--)
|
{
|
inputCopy[k] /= FullR.At(k, k);
|
for (var i = 0; i < k; i++)
|
{
|
inputCopy[i] -= inputCopy[k]*FullR.At(i, k);
|
}
|
}
|
|
for (var i = 0; i < FullR.ColumnCount; i++)
|
{
|
result[i] = inputCopy[i];
|
}
|
}
|
}
|
}
|