// <copyright file="UserLU.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
|
namespace IStation.Numerics.LinearAlgebra.Double.Factorization
|
{
|
/// <summary>
|
/// <para>A class which encapsulates the functionality of an LU factorization.</para>
|
/// <para>For a matrix A, the LU factorization is a pair of lower triangular matrix L and
|
/// upper triangular matrix U so that A = L*U.</para>
|
/// </summary>
|
/// <remarks>
|
/// The computation of the LU factorization is done at construction time.
|
/// </remarks>
|
internal sealed class UserLU : LU
|
{
|
/// <summary>
|
/// Initializes a new instance of the <see cref="UserLU"/> class. This object will compute the
|
/// LU factorization when the constructor is called and cache it's factorization.
|
/// </summary>
|
/// <param name="matrix">The matrix to factor.</param>
|
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
|
/// <exception cref="ArgumentException">If <paramref name="matrix"/> is not a square matrix.</exception>
|
public static UserLU Create(Matrix<double> matrix)
|
{
|
if (matrix == null)
|
{
|
throw new ArgumentNullException(nameof(matrix));
|
}
|
|
if (matrix.RowCount != matrix.ColumnCount)
|
{
|
throw new ArgumentException("Matrix must be square.");
|
}
|
|
// Create an array for the pivot indices.
|
var order = matrix.RowCount;
|
var factors = matrix.Clone();
|
var pivots = new int[order];
|
|
// Initialize the pivot matrix to the identity permutation.
|
for (var i = 0; i < order; i++)
|
{
|
pivots[i] = i;
|
}
|
|
var vectorLUcolj = new double[order];
|
for (var j = 0; j < order; j++)
|
{
|
// Make a copy of the j-th column to localize references.
|
for (var i = 0; i < order; i++)
|
{
|
vectorLUcolj[i] = factors.At(i, j);
|
}
|
|
// Apply previous transformations.
|
for (var i = 0; i < order; i++)
|
{
|
var kmax = Math.Min(i, j);
|
var s = 0.0;
|
for (var k = 0; k < kmax; k++)
|
{
|
s += factors.At(i, k)*vectorLUcolj[k];
|
}
|
|
vectorLUcolj[i] -= s;
|
factors.At(i, j, vectorLUcolj[i]);
|
}
|
|
// Find pivot and exchange if necessary.
|
var p = j;
|
for (var i = j + 1; i < order; i++)
|
{
|
if (Math.Abs(vectorLUcolj[i]) > Math.Abs(vectorLUcolj[p]))
|
{
|
p = i;
|
}
|
}
|
|
if (p != j)
|
{
|
for (var k = 0; k < order; k++)
|
{
|
var temp = factors.At(p, k);
|
factors.At(p, k, factors.At(j, k));
|
factors.At(j, k, temp);
|
}
|
|
pivots[j] = p;
|
}
|
|
// Compute multipliers.
|
if (j < order & factors.At(j, j) != 0.0)
|
{
|
for (var i = j + 1; i < order; i++)
|
{
|
factors.At(i, j, (factors.At(i, j)/factors.At(j, j)));
|
}
|
}
|
}
|
|
return new UserLU(factors, pivots);
|
}
|
|
UserLU(Matrix<double> factors, int[] pivots)
|
: base(factors, pivots)
|
{
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <c>AX = B</c>, with A LU factorized.
|
/// </summary>
|
/// <param name="input">The right hand side <see cref="Matrix{T}"/>, <c>B</c>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <c>X</c>.</param>
|
public override void Solve(Matrix<double> input, Matrix<double> result)
|
{
|
// Check for proper arguments.
|
if (input == null)
|
{
|
throw new ArgumentNullException(nameof(input));
|
}
|
|
if (result == null)
|
{
|
throw new ArgumentNullException(nameof(result));
|
}
|
|
// Check for proper dimensions.
|
if (result.RowCount != input.RowCount)
|
{
|
throw new ArgumentException("Matrix row dimensions must agree.");
|
}
|
|
if (result.ColumnCount != input.ColumnCount)
|
{
|
throw new ArgumentException("Matrix column dimensions must agree.");
|
}
|
|
if (input.RowCount != Factors.RowCount)
|
{
|
throw Matrix.DimensionsDontMatch<ArgumentException>(input, Factors);
|
}
|
|
// Copy the contents of input to result.
|
input.CopyTo(result);
|
for (var i = 0; i < Pivots.Length; i++)
|
{
|
if (Pivots[i] == i)
|
{
|
continue;
|
}
|
|
var p = Pivots[i];
|
for (var j = 0; j < result.ColumnCount; j++)
|
{
|
var temp = result.At(p, j);
|
result.At(p, j, result.At(i, j));
|
result.At(i, j, temp);
|
}
|
}
|
|
var order = Factors.RowCount;
|
|
// Solve L*Y = P*B
|
for (var k = 0; k < order; k++)
|
{
|
for (var i = k + 1; i < order; i++)
|
{
|
for (var j = 0; j < result.ColumnCount; j++)
|
{
|
var temp = result.At(k, j)*Factors.At(i, k);
|
result.At(i, j, result.At(i, j) - temp);
|
}
|
}
|
}
|
|
// Solve U*X = Y;
|
for (var k = order - 1; k >= 0; k--)
|
{
|
for (var j = 0; j < result.ColumnCount; j++)
|
{
|
result.At(k, j, (result.At(k, j)/Factors.At(k, k)));
|
}
|
|
for (var i = 0; i < k; i++)
|
{
|
for (var j = 0; j < result.ColumnCount; j++)
|
{
|
var temp = result.At(k, j)*Factors.At(i, k);
|
result.At(i, j, result.At(i, j) - temp);
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <c>Ax = b</c>, with A LU factorized.
|
/// </summary>
|
/// <param name="input">The right hand side vector, <c>b</c>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <c>x</c>.</param>
|
public override void Solve(Vector<double> input, Vector<double> result)
|
{
|
// Check for proper arguments.
|
if (input == null)
|
{
|
throw new ArgumentNullException(nameof(input));
|
}
|
|
if (result == null)
|
{
|
throw new ArgumentNullException(nameof(result));
|
}
|
|
// Check for proper dimensions.
|
if (input.Count != result.Count)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
if (input.Count != Factors.RowCount)
|
{
|
throw Matrix.DimensionsDontMatch<ArgumentException>(input, Factors);
|
}
|
|
// Copy the contents of input to result.
|
input.CopyTo(result);
|
for (var i = 0; i < Pivots.Length; i++)
|
{
|
if (Pivots[i] == i)
|
{
|
continue;
|
}
|
|
var p = Pivots[i];
|
var temp = result[p];
|
result[p] = result[i];
|
result[i] = temp;
|
}
|
|
var order = Factors.RowCount;
|
|
// Solve L*Y = P*B
|
for (var k = 0; k < order; k++)
|
{
|
for (var i = k + 1; i < order; i++)
|
{
|
result[i] -= result[k]*Factors.At(i, k);
|
}
|
}
|
|
// Solve U*X = Y;
|
for (var k = order - 1; k >= 0; k--)
|
{
|
result[k] /= Factors.At(k, k);
|
for (var i = 0; i < k; i++)
|
{
|
result[i] -= result[k]*Factors.At(i, k);
|
}
|
}
|
}
|
|
/// <summary>
|
/// Returns the inverse of this matrix. The inverse is calculated using LU decomposition.
|
/// </summary>
|
/// <returns>The inverse of this matrix.</returns>
|
public override Matrix<double> Inverse()
|
{
|
var order = Factors.RowCount;
|
var inverse = Matrix<double>.Build.SameAs(Factors, order, order);
|
for (var i = 0; i < order; i++)
|
{
|
inverse.At(i, i, 1.0);
|
}
|
|
return Solve(inverse);
|
}
|
}
|
}
|