// <copyright file="UnivariateHybridMC.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2010 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using IStation.Numerics.Distributions;
|
using IStation.Numerics.Random;
|
|
namespace IStation.Numerics.Statistics.Mcmc
|
{
|
/// <summary>
|
/// A hybrid Monte Carlo sampler for univariate distributions.
|
/// </summary>
|
public class UnivariateHybridMC : HybridMCGeneric<double>
|
{
|
/// <summary>
|
/// Distribution to sample momentum from.
|
/// </summary>
|
private readonly Normal _distribution;
|
|
/// <summary>
|
/// Standard deviations used in the sampling of the
|
/// momentum.
|
/// </summary>
|
private double _sdv;
|
|
/// <summary>
|
/// Gets or sets the standard deviation used in the sampling of the
|
/// momentum.
|
/// </summary>
|
/// <exception cref="ArgumentOutOfRangeException">When standard deviation is negative.</exception>
|
public double MomentumStdDev
|
{
|
get => _sdv;
|
set
|
{
|
if (_sdv != value)
|
{
|
_sdv = SetPositive(value);
|
}
|
}
|
}
|
|
/// <summary>
|
/// Constructs a new Hybrid Monte Carlo sampler for a univariate probability distribution.
|
/// The momentum will be sampled from a normal distribution with standard deviation
|
/// specified by pSdv using the default <see cref="System.Random"/> random
|
/// number generator. A three point estimation will be used for differentiation.
|
/// This constructor will set the burn interval.
|
/// </summary>
|
/// <param name="x0">The initial sample.</param>
|
/// <param name="pdfLnP">The log density of the distribution we want to sample from.</param>
|
/// <param name="frogLeapSteps">Number frog leap simulation steps.</param>
|
/// <param name="stepSize">Size of the frog leap simulation steps.</param>
|
/// <param name="burnInterval">The number of iterations in between returning samples.</param>
|
/// <param name="pSdv">The standard deviation of the normal distribution that is used to sample
|
/// the momentum.</param>
|
/// <exception cref="ArgumentOutOfRangeException">When the number of burnInterval iteration is negative.</exception>
|
public UnivariateHybridMC(double x0, DensityLn<double> pdfLnP, int frogLeapSteps, double stepSize, int burnInterval = 0, double pSdv = 1)
|
: this(x0, pdfLnP, frogLeapSteps, stepSize, burnInterval, pSdv, SystemRandomSource.Default)
|
{
|
}
|
|
/// <summary>
|
/// Constructs a new Hybrid Monte Carlo sampler for a univariate probability distribution.
|
/// The momentum will be sampled from a normal distribution with standard deviation
|
/// specified by pSdv using a random
|
/// number generator provided by the user. A three point estimation will be used for differentiation.
|
/// This constructor will set the burn interval.
|
/// </summary>
|
/// <param name="x0">The initial sample.</param>
|
/// <param name="pdfLnP">The log density of the distribution we want to sample from.</param>
|
/// <param name="frogLeapSteps">Number frog leap simulation steps.</param>
|
/// <param name="stepSize">Size of the frog leap simulation steps.</param>
|
/// <param name="burnInterval">The number of iterations in between returning samples.</param>
|
/// <param name="pSdv">The standard deviation of the normal distribution that is used to sample
|
/// the momentum.</param>
|
/// <param name="randomSource">Random number generator used to sample the momentum.</param>
|
/// <exception cref="ArgumentOutOfRangeException">When the number of burnInterval iteration is negative.</exception>
|
public UnivariateHybridMC(double x0, DensityLn<double> pdfLnP, int frogLeapSteps, double stepSize, int burnInterval, double pSdv, System.Random randomSource)
|
: this(x0, pdfLnP, frogLeapSteps, stepSize, burnInterval, pSdv, randomSource, Grad)
|
{
|
}
|
|
/// <summary>
|
/// Constructs a new Hybrid Monte Carlo sampler for a multivariate probability distribution.
|
/// The momentum will be sampled from a normal distribution with standard deviation
|
/// given by pSdv using a random
|
/// number generator provided by the user. This constructor will set both the burn interval and the method used for
|
/// numerical differentiation.
|
/// </summary>
|
/// <param name="x0">The initial sample.</param>
|
/// <param name="pdfLnP">The log density of the distribution we want to sample from.</param>
|
/// <param name="frogLeapSteps">Number frog leap simulation steps.</param>
|
/// <param name="stepSize">Size of the frog leap simulation steps.</param>
|
/// <param name="burnInterval">The number of iterations in between returning samples.</param>
|
/// <param name="pSdv">The standard deviation of the normal distribution that is used to sample
|
/// the momentum.</param>
|
/// <param name="diff">The method used for numerical differentiation.</param>
|
/// <param name="randomSource">Random number generator used for sampling the momentum.</param>
|
/// <exception cref="ArgumentOutOfRangeException">When the number of burnInterval iteration is negative.</exception>
|
public UnivariateHybridMC(double x0, DensityLn<double> pdfLnP, int frogLeapSteps, double stepSize, int burnInterval, double pSdv, System.Random randomSource, DiffMethod diff)
|
: base(x0, pdfLnP, frogLeapSteps, stepSize, burnInterval, randomSource, diff)
|
{
|
MomentumStdDev = pSdv;
|
_distribution = new Normal(0.0, MomentumStdDev, RandomSource);
|
Burn(BurnInterval);
|
}
|
|
/// <summary>
|
/// Use for copying objects in the Burn method.
|
/// </summary>
|
/// <param name="source">The source of copying.</param>
|
/// <returns>A copy of the source object.</returns>
|
protected override double Copy(double source)
|
{
|
return source;
|
}
|
|
/// <summary>
|
/// Use for creating temporary objects in the Burn method.
|
/// </summary>
|
/// <returns>An object of type T.</returns>
|
protected override double Create()
|
{
|
return 0;
|
}
|
|
/// <inheritdoc/>
|
protected override void DoAdd(ref double first, double factor, double second)
|
{
|
first += factor * second;
|
}
|
|
/// <inheritdoc/>
|
protected override double DoProduct(double first, double second)
|
{
|
return first * second;
|
}
|
|
/// <inheritdoc/>
|
protected override void DoSubtract(ref double first, double factor, double second)
|
{
|
first -= factor * second;
|
}
|
|
/// <summary>
|
/// Samples the momentum from a normal distribution.
|
/// </summary>
|
/// <param name="p">The momentum to be randomized.</param>
|
protected override void RandomizeMomentum(ref double p)
|
{
|
p = _distribution.Sample();
|
}
|
|
/// <summary>
|
/// The default method used for computing the derivative. Uses a simple three point estimation.
|
/// </summary>
|
/// <param name="function">Function for which the derivative is to be evaluated.</param>
|
/// <param name="x">The location where the derivative is to be evaluated.</param>
|
/// <returns>The derivative of the function at the point x.</returns>
|
static double Grad(DensityLn<double> function, double x)
|
{
|
double h = Math.Max(10e-4, (10e-7) * x);
|
double increment = x + h;
|
double decrement = x - h;
|
return (function(increment) - function(decrement)) / (2 * h);
|
}
|
}
|
}
|