// <copyright file="UserCholesky.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using IStation.Numerics.Threading;
|
|
namespace IStation.Numerics.LinearAlgebra.Complex.Factorization
|
{
|
using Complex = System.Numerics.Complex;
|
|
/// <summary>
|
/// <para>A class which encapsulates the functionality of a Cholesky factorization for user matrices.</para>
|
/// <para>For a symmetric, positive definite matrix A, the Cholesky factorization
|
/// is an lower triangular matrix L so that A = L*L'.</para>
|
/// </summary>
|
/// <remarks>
|
/// The computation of the Cholesky factorization is done at construction time. If the matrix is not symmetric
|
/// or positive definite, the constructor will throw an exception.
|
/// </remarks>
|
internal sealed class UserCholesky : Cholesky
|
{
|
/// <summary>
|
/// Computes the Cholesky factorization in-place.
|
/// </summary>
|
/// <param name="factor">On entry, the matrix to factor. On exit, the Cholesky factor matrix</param>
|
/// <exception cref="ArgumentNullException">If <paramref name="factor"/> is <c>null</c>.</exception>
|
/// <exception cref="ArgumentException">If <paramref name="factor"/> is not a square matrix.</exception>
|
/// <exception cref="ArgumentException">If <paramref name="factor"/> is not positive definite.</exception>
|
static void DoCholesky(Matrix<Complex> factor)
|
{
|
if (factor.RowCount != factor.ColumnCount)
|
{
|
throw new ArgumentException("Matrix must be square.");
|
}
|
|
// Create a new matrix for the Cholesky factor, then perform factorization (while overwriting).
|
var tmpColumn = new Complex[factor.RowCount];
|
|
// Main loop - along the diagonal
|
for (var ij = 0; ij < factor.RowCount; ij++)
|
{
|
// "Pivot" element
|
var tmpVal = factor.At(ij, ij);
|
|
if (tmpVal.Real > 0.0)
|
{
|
tmpVal = tmpVal.SquareRoot();
|
factor.At(ij, ij, tmpVal);
|
tmpColumn[ij] = tmpVal;
|
|
// Calculate multipliers and copy to local column
|
// Current column, below the diagonal
|
for (var i = ij + 1; i < factor.RowCount; i++)
|
{
|
factor.At(i, ij, factor.At(i, ij)/tmpVal);
|
tmpColumn[i] = factor.At(i, ij);
|
}
|
|
// Remaining columns, below the diagonal
|
DoCholeskyStep(factor, factor.RowCount, ij + 1, factor.RowCount, tmpColumn, Control.MaxDegreeOfParallelism);
|
}
|
else
|
{
|
throw new ArgumentException("Matrix must be positive definite.");
|
}
|
|
for (var i = ij + 1; i < factor.RowCount; i++)
|
{
|
factor.At(ij, i, Complex.Zero);
|
}
|
}
|
}
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="UserCholesky"/> class. This object will compute the
|
/// Cholesky factorization when the constructor is called and cache it's factorization.
|
/// </summary>
|
/// <param name="matrix">The matrix to factor.</param>
|
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
|
/// <exception cref="ArgumentException">If <paramref name="matrix"/> is not a square matrix.</exception>
|
/// <exception cref="ArgumentException">If <paramref name="matrix"/> is not positive definite.</exception>
|
public static UserCholesky Create(Matrix<Complex> matrix)
|
{
|
// Create a new matrix for the Cholesky factor, then perform factorization (while overwriting).
|
var factor = matrix.Clone();
|
DoCholesky(factor);
|
return new UserCholesky(factor);
|
}
|
|
/// <summary>
|
/// Calculates the Cholesky factorization of the input matrix.
|
/// </summary>
|
/// <param name="matrix">The matrix to be factorized<see cref="Matrix{T}"/>.</param>
|
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
|
/// <exception cref="ArgumentException">If <paramref name="matrix"/> is not a square matrix.</exception>
|
/// <exception cref="ArgumentException">If <paramref name="matrix"/> is not positive definite.</exception>
|
/// <exception cref="ArgumentOutOfRangeException">If <paramref name="matrix"/> does not have the same dimensions as the existing factor.</exception>
|
public override void Factorize(Matrix<Complex> matrix)
|
{
|
if (matrix.RowCount != Factor.RowCount || matrix.ColumnCount != Factor.ColumnCount)
|
{
|
throw Matrix.DimensionsDontMatch<ArgumentException>(matrix, Factor);
|
}
|
|
matrix.CopyTo(Factor);
|
DoCholesky(Factor);
|
}
|
|
UserCholesky(Matrix<Complex> factor)
|
: base(factor)
|
{
|
}
|
|
/// <summary>
|
/// Calculate Cholesky step
|
/// </summary>
|
/// <param name="data">Factor matrix</param>
|
/// <param name="rowDim">Number of rows</param>
|
/// <param name="firstCol">Column start</param>
|
/// <param name="colLimit">Total columns</param>
|
/// <param name="multipliers">Multipliers calculated previously</param>
|
/// <param name="availableCores">Number of available processors</param>
|
static void DoCholeskyStep(Matrix<Complex> data, int rowDim, int firstCol, int colLimit, Complex[] multipliers, int availableCores)
|
{
|
var tmpColCount = colLimit - firstCol;
|
|
if ((availableCores > 1) && (tmpColCount > 200))
|
{
|
var tmpSplit = firstCol + (tmpColCount/3);
|
var tmpCores = availableCores/2;
|
|
CommonParallel.Invoke(
|
() => DoCholeskyStep(data, rowDim, firstCol, tmpSplit, multipliers, tmpCores),
|
() => DoCholeskyStep(data, rowDim, tmpSplit, colLimit, multipliers, tmpCores));
|
}
|
else
|
{
|
for (var j = firstCol; j < colLimit; j++)
|
{
|
var tmpVal = multipliers[j];
|
for (var i = j; i < rowDim; i++)
|
{
|
data.At(i, j, data.At(i, j) - (multipliers[i]*tmpVal.Conjugate()));
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>AX = B</b>, with A Cholesky factorized.
|
/// </summary>
|
/// <param name="input">The right hand side <see cref="Matrix{T}"/>, <b>B</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>X</b>.</param>
|
public override void Solve(Matrix<Complex> input, Matrix<Complex> result)
|
{
|
if (result.RowCount != input.RowCount)
|
{
|
throw new ArgumentException("Matrix row dimensions must agree.");
|
}
|
|
if (result.ColumnCount != input.ColumnCount)
|
{
|
throw new ArgumentException("Matrix column dimensions must agree.");
|
}
|
|
if (input.RowCount != Factor.RowCount)
|
{
|
throw Matrix.DimensionsDontMatch<ArgumentException>(input, Factor);
|
}
|
|
input.CopyTo(result);
|
var order = Factor.RowCount;
|
|
for (var c = 0; c < result.ColumnCount; c++)
|
{
|
// Solve L*Y = B;
|
Complex sum;
|
for (var i = 0; i < order; i++)
|
{
|
sum = result.At(i, c);
|
for (var k = i - 1; k >= 0; k--)
|
{
|
sum -= Factor.At(i, k)*result.At(k, c);
|
}
|
|
result.At(i, c, sum/Factor.At(i, i));
|
}
|
|
// Solve L'*X = Y;
|
for (var i = order - 1; i >= 0; i--)
|
{
|
sum = result.At(i, c);
|
for (var k = i + 1; k < order; k++)
|
{
|
sum -= Factor.At(k, i).Conjugate()*result.At(k, c);
|
}
|
|
result.At(i, c, sum/Factor.At(i, i));
|
}
|
}
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>Ax = b</b>, with A Cholesky factorized.
|
/// </summary>
|
/// <param name="input">The right hand side vector, <b>b</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>x</b>.</param>
|
public override void Solve(Vector<Complex> input, Vector<Complex> result)
|
{
|
if (input.Count != result.Count)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
if (input.Count != Factor.RowCount)
|
{
|
throw Matrix.DimensionsDontMatch<ArgumentException>(input, Factor);
|
}
|
|
input.CopyTo(result);
|
var order = Factor.RowCount;
|
|
// Solve L*Y = B;
|
Complex sum;
|
for (var i = 0; i < order; i++)
|
{
|
sum = result[i];
|
for (var k = i - 1; k >= 0; k--)
|
{
|
sum -= Factor.At(i, k)*result[k];
|
}
|
|
result[i] = sum/Factor.At(i, i);
|
}
|
|
// Solve L'*X = Y;
|
for (var i = order - 1; i >= 0; i--)
|
{
|
sum = result[i];
|
for (var k = i + 1; k < order; k++)
|
{
|
sum -= Factor.At(k, i).Conjugate()*result[k];
|
}
|
|
result[i] = sum/Factor.At(i, i);
|
}
|
}
|
}
|
}
|