// <copyright file="SparseMatrix.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using System.Diagnostics;
|
using System.Linq;
|
using IStation.Numerics.LinearAlgebra.Storage;
|
using IStation.Numerics.Providers.LinearAlgebra;
|
|
namespace IStation.Numerics.LinearAlgebra.Complex
|
{
|
using Complex = System.Numerics.Complex;
|
|
/// <summary>
|
/// A Matrix with sparse storage, intended for very large matrices where most of the cells are zero.
|
/// The underlying storage scheme is 3-array compressed-sparse-row (CSR) Format.
|
/// <a href="http://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_.28CSR_or_CRS.29">Wikipedia - CSR</a>.
|
/// </summary>
|
[Serializable]
|
[DebuggerDisplay("SparseMatrix {RowCount}x{ColumnCount}-Complex {NonZerosCount}-NonZero")]
|
public class SparseMatrix : Matrix
|
{
|
readonly SparseCompressedRowMatrixStorage<Complex> _storage;
|
|
/// <summary>
|
/// Gets the number of non zero elements in the matrix.
|
/// </summary>
|
/// <value>The number of non zero elements.</value>
|
public int NonZerosCount => _storage.ValueCount;
|
|
/// <summary>
|
/// Create a new sparse matrix straight from an initialized matrix storage instance.
|
/// The storage is used directly without copying.
|
/// Intended for advanced scenarios where you're working directly with
|
/// storage for performance or interop reasons.
|
/// </summary>
|
public SparseMatrix(SparseCompressedRowMatrixStorage<Complex> storage)
|
: base(storage)
|
{
|
_storage = storage;
|
}
|
|
/// <summary>
|
/// Create a new square sparse matrix with the given number of rows and columns.
|
/// All cells of the matrix will be initialized to zero.
|
/// </summary>
|
/// <exception cref="ArgumentException">If the order is less than one.</exception>
|
public SparseMatrix(int order)
|
: this(order, order)
|
{
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix with the given number of rows and columns.
|
/// All cells of the matrix will be initialized to zero.
|
/// </summary>
|
/// <exception cref="ArgumentException">If the row or column count is less than one.</exception>
|
public SparseMatrix(int rows, int columns)
|
: this(new SparseCompressedRowMatrixStorage<Complex>(rows, columns))
|
{
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given other matrix.
|
/// This new matrix will be independent from the other matrix.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfMatrix(Matrix<Complex> matrix)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfMatrix(matrix.Storage));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given two-dimensional array.
|
/// This new matrix will be independent from the provided array.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfArray(Complex[,] array)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfArray(array));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given indexed enumerable.
|
/// Keys must be provided at most once, zero is assumed if a key is omitted.
|
/// This new matrix will be independent from the enumerable.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfIndexed(int rows, int columns, IEnumerable<Tuple<int, int, Complex>> enumerable)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfIndexedEnumerable(rows, columns, enumerable));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given enumerable.
|
/// The enumerable is assumed to be in row-major order (row by row).
|
/// This new matrix will be independent from the enumerable.
|
/// A new memory block will be allocated for storing the vector.
|
/// </summary>
|
/// <seealso href="http://en.wikipedia.org/wiki/Row-major_order"/>
|
public static SparseMatrix OfRowMajor(int rows, int columns, IEnumerable<Complex> rowMajor)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfRowMajorEnumerable(rows, columns, rowMajor));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix with the given number of rows and columns as a copy of the given array.
|
/// The array is assumed to be in column-major order (column by column).
|
/// This new matrix will be independent from the provided array.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
/// <seealso href="http://en.wikipedia.org/wiki/Row-major_order"/>
|
public static SparseMatrix OfColumnMajor(int rows, int columns, IList<Complex> columnMajor)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfColumnMajorList(rows, columns, columnMajor));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given enumerable of enumerable columns.
|
/// Each enumerable in the master enumerable specifies a column.
|
/// This new matrix will be independent from the enumerables.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfColumns(IEnumerable<IEnumerable<Complex>> data)
|
{
|
return OfColumnArrays(data.Select(v => v.ToArray()).ToArray());
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given enumerable of enumerable columns.
|
/// Each enumerable in the master enumerable specifies a column.
|
/// This new matrix will be independent from the enumerables.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfColumns(int rows, int columns, IEnumerable<IEnumerable<Complex>> data)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfColumnEnumerables(rows, columns, data));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given column arrays.
|
/// This new matrix will be independent from the arrays.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfColumnArrays(params Complex[][] columns)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfColumnArrays(columns));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given column arrays.
|
/// This new matrix will be independent from the arrays.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfColumnArrays(IEnumerable<Complex[]> columns)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfColumnArrays((columns as Complex[][]) ?? columns.ToArray()));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given column vectors.
|
/// This new matrix will be independent from the vectors.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfColumnVectors(params Vector<Complex>[] columns)
|
{
|
var storage = new VectorStorage<Complex>[columns.Length];
|
for (int i = 0; i < columns.Length; i++)
|
{
|
storage[i] = columns[i].Storage;
|
}
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfColumnVectors(storage));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given column vectors.
|
/// This new matrix will be independent from the vectors.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfColumnVectors(IEnumerable<Vector<Complex>> columns)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfColumnVectors(columns.Select(c => c.Storage).ToArray()));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given enumerable of enumerable rows.
|
/// Each enumerable in the master enumerable specifies a row.
|
/// This new matrix will be independent from the enumerables.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfRows(IEnumerable<IEnumerable<Complex>> data)
|
{
|
return OfRowArrays(data.Select(v => v.ToArray()).ToArray());
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given enumerable of enumerable rows.
|
/// Each enumerable in the master enumerable specifies a row.
|
/// This new matrix will be independent from the enumerables.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfRows(int rows, int columns, IEnumerable<IEnumerable<Complex>> data)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfRowEnumerables(rows, columns, data));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given row arrays.
|
/// This new matrix will be independent from the arrays.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfRowArrays(params Complex[][] rows)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfRowArrays(rows));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given row arrays.
|
/// This new matrix will be independent from the arrays.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfRowArrays(IEnumerable<Complex[]> rows)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfRowArrays((rows as Complex[][]) ?? rows.ToArray()));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given row vectors.
|
/// This new matrix will be independent from the vectors.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfRowVectors(params Vector<Complex>[] rows)
|
{
|
var storage = new VectorStorage<Complex>[rows.Length];
|
for (int i = 0; i < rows.Length; i++)
|
{
|
storage[i] = rows[i].Storage;
|
}
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfRowVectors(storage));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix as a copy of the given row vectors.
|
/// This new matrix will be independent from the vectors.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfRowVectors(IEnumerable<Vector<Complex>> rows)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfRowVectors(rows.Select(r => r.Storage).ToArray()));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix with the diagonal as a copy of the given vector.
|
/// This new matrix will be independent from the vector.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfDiagonalVector(Vector<Complex> diagonal)
|
{
|
var m = new SparseMatrix(diagonal.Count, diagonal.Count);
|
m.SetDiagonal(diagonal);
|
return m;
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix with the diagonal as a copy of the given vector.
|
/// This new matrix will be independent from the vector.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfDiagonalVector(int rows, int columns, Vector<Complex> diagonal)
|
{
|
var m = new SparseMatrix(rows, columns);
|
m.SetDiagonal(diagonal);
|
return m;
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix with the diagonal as a copy of the given array.
|
/// This new matrix will be independent from the array.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfDiagonalArray(Complex[] diagonal)
|
{
|
var m = new SparseMatrix(diagonal.Length, diagonal.Length);
|
m.SetDiagonal(diagonal);
|
return m;
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix with the diagonal as a copy of the given array.
|
/// This new matrix will be independent from the array.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static SparseMatrix OfDiagonalArray(int rows, int columns, Complex[] diagonal)
|
{
|
var m = new SparseMatrix(rows, columns);
|
m.SetDiagonal(diagonal);
|
return m;
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix and initialize each value to the same provided value.
|
/// </summary>
|
public static SparseMatrix Create(int rows, int columns, Complex value)
|
{
|
if (value == Complex.Zero) return new SparseMatrix(rows, columns);
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfValue(rows, columns, value));
|
}
|
|
/// <summary>
|
/// Create a new sparse matrix and initialize each value using the provided init function.
|
/// </summary>
|
public static SparseMatrix Create(int rows, int columns, Func<int, int, Complex> init)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfInit(rows, columns, init));
|
}
|
|
/// <summary>
|
/// Create a new diagonal sparse matrix and initialize each diagonal value to the same provided value.
|
/// </summary>
|
public static SparseMatrix CreateDiagonal(int rows, int columns, Complex value)
|
{
|
if (value == Complex.Zero) return new SparseMatrix(rows, columns);
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfDiagonalInit(rows, columns, i => value));
|
}
|
|
/// <summary>
|
/// Create a new diagonal sparse matrix and initialize each diagonal value using the provided init function.
|
/// </summary>
|
public static SparseMatrix CreateDiagonal(int rows, int columns, Func<int, Complex> init)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfDiagonalInit(rows, columns, init));
|
}
|
|
/// <summary>
|
/// Create a new square sparse identity matrix where each diagonal value is set to One.
|
/// </summary>
|
public static SparseMatrix CreateIdentity(int order)
|
{
|
return new SparseMatrix(SparseCompressedRowMatrixStorage<Complex>.OfDiagonalInit(order, order, i => One));
|
}
|
|
/// <summary>
|
/// Returns a new matrix containing the lower triangle of this matrix.
|
/// </summary>
|
/// <returns>The lower triangle of this matrix.</returns>
|
public override Matrix<Complex> LowerTriangle()
|
{
|
var result = Build.SameAs(this);
|
LowerTriangleImpl(result);
|
return result;
|
}
|
|
/// <summary>
|
/// Puts the lower triangle of this matrix into the result matrix.
|
/// </summary>
|
/// <param name="result">Where to store the lower triangle.</param>
|
/// <exception cref="ArgumentNullException">If <paramref name="result"/> is <see langword="null" />.</exception>
|
/// <exception cref="ArgumentException">If the result matrix's dimensions are not the same as this matrix.</exception>
|
public override void LowerTriangle(Matrix<Complex> result)
|
{
|
if (result == null)
|
{
|
throw new ArgumentNullException(nameof(result));
|
}
|
|
if (result.RowCount != RowCount || result.ColumnCount != ColumnCount)
|
{
|
throw DimensionsDontMatch<ArgumentException>(this, result);
|
}
|
|
if (ReferenceEquals(this, result))
|
{
|
var tmp = Build.SameAs(result);
|
LowerTriangle(tmp);
|
tmp.CopyTo(result);
|
}
|
else
|
{
|
result.Clear();
|
LowerTriangleImpl(result);
|
}
|
}
|
|
/// <summary>
|
/// Puts the lower triangle of this matrix into the result matrix.
|
/// </summary>
|
/// <param name="result">Where to store the lower triangle.</param>
|
private void LowerTriangleImpl(Matrix<Complex> result)
|
{
|
var rowPointers = _storage.RowPointers;
|
var columnIndices = _storage.ColumnIndices;
|
var values = _storage.Values;
|
|
for (var row = 0; row < result.RowCount; row++)
|
{
|
var endIndex = rowPointers[row + 1];
|
for (var j = rowPointers[row]; j < endIndex; j++)
|
{
|
if (row >= columnIndices[j])
|
{
|
result.At(row, columnIndices[j], values[j]);
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Returns a new matrix containing the upper triangle of this matrix.
|
/// </summary>
|
/// <returns>The upper triangle of this matrix.</returns>
|
public override Matrix<Complex> UpperTriangle()
|
{
|
var result = Build.SameAs(this);
|
UpperTriangleImpl(result);
|
return result;
|
}
|
|
/// <summary>
|
/// Puts the upper triangle of this matrix into the result matrix.
|
/// </summary>
|
/// <param name="result">Where to store the lower triangle.</param>
|
/// <exception cref="ArgumentNullException">If <paramref name="result"/> is <see langword="null" />.</exception>
|
/// <exception cref="ArgumentException">If the result matrix's dimensions are not the same as this matrix.</exception>
|
public override void UpperTriangle(Matrix<Complex> result)
|
{
|
if (result == null)
|
{
|
throw new ArgumentNullException(nameof(result));
|
}
|
|
if (result.RowCount != RowCount || result.ColumnCount != ColumnCount)
|
{
|
throw DimensionsDontMatch<ArgumentException>(this, result);
|
}
|
|
if (ReferenceEquals(this, result))
|
{
|
var tmp = Build.SameAs(result);
|
UpperTriangle(tmp);
|
tmp.CopyTo(result);
|
}
|
else
|
{
|
result.Clear();
|
UpperTriangleImpl(result);
|
}
|
}
|
|
/// <summary>
|
/// Puts the upper triangle of this matrix into the result matrix.
|
/// </summary>
|
/// <param name="result">Where to store the lower triangle.</param>
|
private void UpperTriangleImpl(Matrix<Complex> result)
|
{
|
var rowPointers = _storage.RowPointers;
|
var columnIndices = _storage.ColumnIndices;
|
var values = _storage.Values;
|
|
for (var row = 0; row < result.RowCount; row++)
|
{
|
var endIndex = rowPointers[row + 1];
|
for (var j = rowPointers[row]; j < endIndex; j++)
|
{
|
if (row <= columnIndices[j])
|
{
|
result.At(row, columnIndices[j], values[j]);
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Returns a new matrix containing the lower triangle of this matrix. The new matrix
|
/// does not contain the diagonal elements of this matrix.
|
/// </summary>
|
/// <returns>The lower triangle of this matrix.</returns>
|
public override Matrix<Complex> StrictlyLowerTriangle()
|
{
|
var result = Build.SameAs(this);
|
StrictlyLowerTriangleImpl(result);
|
return result;
|
}
|
|
/// <summary>
|
/// Puts the strictly lower triangle of this matrix into the result matrix.
|
/// </summary>
|
/// <param name="result">Where to store the lower triangle.</param>
|
/// <exception cref="ArgumentNullException">If <paramref name="result"/> is <see langword="null" />.</exception>
|
/// <exception cref="ArgumentException">If the result matrix's dimensions are not the same as this matrix.</exception>
|
public override void StrictlyLowerTriangle(Matrix<Complex> result)
|
{
|
if (result == null)
|
{
|
throw new ArgumentNullException(nameof(result));
|
}
|
|
if (result.RowCount != RowCount || result.ColumnCount != ColumnCount)
|
{
|
throw DimensionsDontMatch<ArgumentException>(this, result);
|
}
|
|
if (ReferenceEquals(this, result))
|
{
|
var tmp = Build.SameAs(result);
|
StrictlyLowerTriangle(tmp);
|
tmp.CopyTo(result);
|
}
|
else
|
{
|
result.Clear();
|
StrictlyLowerTriangleImpl(result);
|
}
|
}
|
|
/// <summary>
|
/// Puts the strictly lower triangle of this matrix into the result matrix.
|
/// </summary>
|
/// <param name="result">Where to store the lower triangle.</param>
|
private void StrictlyLowerTriangleImpl(Matrix<Complex> result)
|
{
|
var rowPointers = _storage.RowPointers;
|
var columnIndices = _storage.ColumnIndices;
|
var values = _storage.Values;
|
|
for (var row = 0; row < result.RowCount; row++)
|
{
|
var endIndex = rowPointers[row + 1];
|
for (var j = rowPointers[row]; j < endIndex; j++)
|
{
|
if (row > columnIndices[j])
|
{
|
result.At(row, columnIndices[j], values[j]);
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Returns a new matrix containing the upper triangle of this matrix. The new matrix
|
/// does not contain the diagonal elements of this matrix.
|
/// </summary>
|
/// <returns>The upper triangle of this matrix.</returns>
|
public override Matrix<Complex> StrictlyUpperTriangle()
|
{
|
var result = Build.SameAs(this);
|
StrictlyUpperTriangleImpl(result);
|
return result;
|
}
|
|
/// <summary>
|
/// Puts the strictly upper triangle of this matrix into the result matrix.
|
/// </summary>
|
/// <param name="result">Where to store the lower triangle.</param>
|
/// <exception cref="ArgumentNullException">If <paramref name="result"/> is <see langword="null" />.</exception>
|
/// <exception cref="ArgumentException">If the result matrix's dimensions are not the same as this matrix.</exception>
|
public override void StrictlyUpperTriangle(Matrix<Complex> result)
|
{
|
if (result == null)
|
{
|
throw new ArgumentNullException(nameof(result));
|
}
|
|
if (result.RowCount != RowCount || result.ColumnCount != ColumnCount)
|
{
|
throw DimensionsDontMatch<ArgumentException>(this, result);
|
}
|
|
if (ReferenceEquals(this, result))
|
{
|
var tmp = Build.SameAs(result);
|
StrictlyUpperTriangle(tmp);
|
tmp.CopyTo(result);
|
}
|
else
|
{
|
result.Clear();
|
StrictlyUpperTriangleImpl(result);
|
}
|
}
|
|
/// <summary>
|
/// Puts the strictly upper triangle of this matrix into the result matrix.
|
/// </summary>
|
/// <param name="result">Where to store the lower triangle.</param>
|
private void StrictlyUpperTriangleImpl(Matrix<Complex> result)
|
{
|
var rowPointers = _storage.RowPointers;
|
var columnIndices = _storage.ColumnIndices;
|
var values = _storage.Values;
|
|
for (var row = 0; row < result.RowCount; row++)
|
{
|
var endIndex = rowPointers[row + 1];
|
for (var j = rowPointers[row]; j < endIndex; j++)
|
{
|
if (row < columnIndices[j])
|
{
|
result.At(row, columnIndices[j], values[j]);
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Negate each element of this matrix and place the results into the result matrix.
|
/// </summary>
|
/// <param name="result">The result of the negation.</param>
|
protected override void DoNegate(Matrix<Complex> result)
|
{
|
CopyTo(result);
|
DoMultiply(-1, result);
|
}
|
|
/// <summary>Calculates the induced infinity norm of this matrix.</summary>
|
/// <returns>The maximum absolute row sum of the matrix.</returns>
|
public override double InfinityNorm()
|
{
|
var rowPointers = _storage.RowPointers;
|
var values = _storage.Values;
|
var norm = 0d;
|
for (var i = 0; i < RowCount; i++)
|
{
|
var startIndex = rowPointers[i];
|
var endIndex = rowPointers[i + 1];
|
|
if (startIndex == endIndex)
|
{
|
continue;
|
}
|
|
var s = 0d;
|
for (var j = startIndex; j < endIndex; j++)
|
{
|
s += values[j].Magnitude;
|
}
|
norm = Math.Max(norm, s);
|
}
|
return norm;
|
}
|
|
/// <summary>Calculates the entry-wise Frobenius norm of this matrix.</summary>
|
/// <returns>The square root of the sum of the squared values.</returns>
|
public override double FrobeniusNorm()
|
{
|
var aat = (SparseCompressedRowMatrixStorage<Complex>) (this*ConjugateTranspose()).Storage;
|
var norm = 0d;
|
for (var i = 0; i < aat.RowCount; i++)
|
{
|
var startIndex = aat.RowPointers[i];
|
var endIndex = aat.RowPointers[i + 1];
|
|
if (startIndex == endIndex)
|
{
|
continue;
|
}
|
|
for (var j = startIndex; j < endIndex; j++)
|
{
|
if (i == aat.ColumnIndices[j])
|
{
|
norm += aat.Values[j].Magnitude;
|
}
|
}
|
}
|
return Math.Sqrt(norm);
|
}
|
|
/// <summary>
|
/// Adds another matrix to this matrix.
|
/// </summary>
|
/// <param name="other">The matrix to add to this matrix.</param>
|
/// <param name="result">The matrix to store the result of the addition.</param>
|
/// <exception cref="ArgumentNullException">If the other matrix is <see langword="null"/>.</exception>
|
/// <exception cref="ArgumentOutOfRangeException">If the two matrices don't have the same dimensions.</exception>
|
protected override void DoAdd(Matrix<Complex> other, Matrix<Complex> result)
|
{
|
if (other is SparseMatrix sparseOther && result is SparseMatrix sparseResult)
|
{
|
if (ReferenceEquals(this, other))
|
{
|
if (!ReferenceEquals(this, result))
|
{
|
CopyTo(result);
|
}
|
|
LinearAlgebraControl.Provider.ScaleArray(2.0, sparseResult._storage.Values, sparseResult._storage.Values);
|
return;
|
}
|
|
SparseMatrix left;
|
|
if (ReferenceEquals(sparseOther, sparseResult))
|
{
|
left = this;
|
}
|
else if (ReferenceEquals(this, sparseResult))
|
{
|
left = sparseOther;
|
}
|
else
|
{
|
CopyTo(sparseResult);
|
left = sparseOther;
|
}
|
|
var leftStorage = left._storage;
|
for (var i = 0; i < leftStorage.RowCount; i++)
|
{
|
var endIndex = leftStorage.RowPointers[i + 1];
|
for (var j = leftStorage.RowPointers[i]; j < endIndex; j++)
|
{
|
var columnIndex = leftStorage.ColumnIndices[j];
|
var resVal = leftStorage.Values[j] + result.At(i, columnIndex);
|
result.At(i, columnIndex, resVal);
|
}
|
}
|
}
|
else
|
{
|
base.DoAdd(other, result);
|
}
|
}
|
|
/// <summary>
|
/// Subtracts another matrix from this matrix.
|
/// </summary>
|
/// <param name="other">The matrix to subtract to this matrix.</param>
|
/// <param name="result">The matrix to store the result of subtraction.</param>
|
/// <exception cref="ArgumentNullException">If the other matrix is <see langword="null"/>.</exception>
|
/// <exception cref="ArgumentOutOfRangeException">If the two matrices don't have the same dimensions.</exception>
|
protected override void DoSubtract(Matrix<Complex> other, Matrix<Complex> result)
|
{
|
var sparseOther = other as SparseMatrix;
|
var sparseResult = result as SparseMatrix;
|
|
if (sparseOther == null || sparseResult == null)
|
{
|
base.DoSubtract(other, result);
|
return;
|
}
|
|
if (ReferenceEquals(this, other))
|
{
|
result.Clear();
|
return;
|
}
|
|
var otherStorage = sparseOther._storage;
|
|
if (ReferenceEquals(this, sparseResult))
|
{
|
for (var i = 0; i < otherStorage.RowCount; i++)
|
{
|
var endIndex = otherStorage.RowPointers[i + 1];
|
for (var j = otherStorage.RowPointers[i]; j < endIndex; j++)
|
{
|
var columnIndex = otherStorage.ColumnIndices[j];
|
var resVal = sparseResult.At(i, columnIndex) - otherStorage.Values[j];
|
result.At(i, columnIndex, resVal);
|
}
|
}
|
}
|
else
|
{
|
if (!ReferenceEquals(sparseOther, sparseResult))
|
{
|
sparseOther.CopyTo(sparseResult);
|
}
|
|
sparseResult.Negate(sparseResult);
|
|
var rowPointers = _storage.RowPointers;
|
var columnIndices = _storage.ColumnIndices;
|
var values = _storage.Values;
|
|
for (var i = 0; i < RowCount; i++)
|
{
|
var endIndex = rowPointers[i + 1];
|
for (var j = rowPointers[i]; j < endIndex; j++)
|
{
|
var columnIndex = columnIndices[j];
|
var resVal = sparseResult.At(i, columnIndex) + values[j];
|
result.At(i, columnIndex, resVal);
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Multiplies each element of the matrix by a scalar and places results into the result matrix.
|
/// </summary>
|
/// <param name="scalar">The scalar to multiply the matrix with.</param>
|
/// <param name="result">The matrix to store the result of the multiplication.</param>
|
protected override void DoMultiply(Complex scalar, Matrix<Complex> result)
|
{
|
if (scalar == 1.0)
|
{
|
CopyTo(result);
|
return;
|
}
|
|
if (scalar == 0.0 || NonZerosCount == 0)
|
{
|
result.Clear();
|
return;
|
}
|
|
if (result is SparseMatrix sparseResult)
|
{
|
if (!ReferenceEquals(this, result))
|
{
|
CopyTo(sparseResult);
|
}
|
|
LinearAlgebraControl.Provider.ScaleArray(scalar, sparseResult._storage.Values, sparseResult._storage.Values);
|
}
|
else
|
{
|
result.Clear();
|
|
var rowPointers = _storage.RowPointers;
|
var columnIndices = _storage.ColumnIndices;
|
var values = _storage.Values;
|
|
for (var row = 0; row < RowCount; row++)
|
{
|
var start = rowPointers[row];
|
var end = rowPointers[row + 1];
|
|
if (start == end)
|
{
|
continue;
|
}
|
|
for (var index = start; index < end; index++)
|
{
|
var column = columnIndices[index];
|
result.At(row, column, values[index] * scalar);
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Multiplies this matrix with another matrix and places the results into the result matrix.
|
/// </summary>
|
/// <param name="other">The matrix to multiply with.</param>
|
/// <param name="result">The result of the multiplication.</param>
|
protected override void DoMultiply(Matrix<Complex> other, Matrix<Complex> result)
|
{
|
var sparseOther = other as SparseMatrix;
|
var sparseResult = result as SparseMatrix;
|
if (sparseOther != null && sparseResult != null)
|
{
|
DoMultiplySparse(sparseOther, sparseResult);
|
return;
|
}
|
|
if (other.Storage is DiagonalMatrixStorage<Complex> diagonalOther && sparseResult != null)
|
{
|
var diagonal = diagonalOther.Data;
|
if (other.ColumnCount == other.RowCount)
|
{
|
Storage.MapIndexedTo(result.Storage, (i, j, x) => x*diagonal[j], Zeros.AllowSkip, ExistingData.Clear);
|
}
|
else
|
{
|
result.Storage.Clear();
|
Storage.MapSubMatrixIndexedTo(result.Storage, (i, j, x) => x*diagonal[j], 0, 0, RowCount, 0, 0, Math.Min(ColumnCount, other.ColumnCount), Zeros.AllowSkip, ExistingData.AssumeZeros);
|
}
|
return;
|
}
|
|
result.Clear();
|
|
|
var rowPointers = _storage.RowPointers;
|
var columnIndices = _storage.ColumnIndices;
|
var values = _storage.Values;
|
if (other.Storage is DenseColumnMajorMatrixStorage<Complex> denseOther)
|
{
|
// in this case we can directly address the underlying data-array
|
for (var row = 0; row < RowCount; row++)
|
{
|
var startIndex = rowPointers[row];
|
var endIndex = rowPointers[row + 1];
|
|
if (startIndex == endIndex)
|
{
|
continue;
|
}
|
|
for (var column = 0; column < other.ColumnCount; column++)
|
{
|
int otherColumnStartPosition = column * other.RowCount;
|
var sum = Complex.Zero;
|
for (var index = startIndex; index < endIndex; index++)
|
{
|
sum += values[index] * denseOther.Data[otherColumnStartPosition + columnIndices[index]];
|
}
|
|
result.At(row, column, sum);
|
}
|
}
|
return;
|
}
|
|
var columnVector = new DenseVector(other.RowCount);
|
for (var row = 0; row < RowCount; row++)
|
{
|
var startIndex = rowPointers[row];
|
var endIndex = rowPointers[row + 1];
|
|
if (startIndex == endIndex)
|
{
|
continue;
|
}
|
|
for (var column = 0; column < other.ColumnCount; column++)
|
{
|
// Multiply row of matrix A on column of matrix B
|
other.Column(column, columnVector);
|
|
var sum = Complex.Zero;
|
for (var index = startIndex; index < endIndex; index++)
|
{
|
sum += values[index] * columnVector[columnIndices[index]];
|
}
|
|
result.At(row, column, sum);
|
}
|
}
|
}
|
|
void DoMultiplySparse(SparseMatrix other, SparseMatrix result)
|
{
|
result.Clear();
|
|
var ax = _storage.Values;
|
var ap = _storage.RowPointers;
|
var ai = _storage.ColumnIndices;
|
|
var bx = other._storage.Values;
|
var bp = other._storage.RowPointers;
|
var bi = other._storage.ColumnIndices;
|
|
int rows = RowCount;
|
int cols = other.ColumnCount;
|
|
int[] cp = result._storage.RowPointers;
|
|
var marker = new int[cols];
|
for (int ib = 0; ib < cols; ib++)
|
{
|
marker[ib] = -1;
|
}
|
|
int count = 0;
|
for (int i = 0; i < rows; i++)
|
{
|
// For each row of A
|
for (int j = ap[i]; j < ap[i + 1]; j++)
|
{
|
// Row number to be added
|
int a = ai[j];
|
for (int k = bp[a]; k < bp[a + 1]; k++)
|
{
|
int b = bi[k];
|
if (marker[b] != i)
|
{
|
marker[b] = i;
|
count++;
|
}
|
}
|
}
|
|
// Record non-zero count.
|
cp[i + 1] = count;
|
}
|
|
var ci = new int[count];
|
var cx = new Complex[count];
|
|
for (int ib = 0; ib < cols; ib++)
|
{
|
marker[ib] = -1;
|
}
|
|
count = 0;
|
for (int i = 0; i < rows; i++)
|
{
|
int rowStart = cp[i];
|
for (int j = ap[i]; j < ap[i + 1]; j++)
|
{
|
int a = ai[j];
|
Complex aEntry = ax[j];
|
for (int k = bp[a]; k < bp[a + 1]; k++)
|
{
|
int b = bi[k];
|
Complex bEntry = bx[k];
|
if (marker[b] < rowStart)
|
{
|
marker[b] = count;
|
ci[marker[b]] = b;
|
cx[marker[b]] = aEntry * bEntry;
|
count++;
|
}
|
else
|
{
|
cx[marker[b]] += aEntry * bEntry;
|
}
|
}
|
}
|
}
|
|
result._storage.Values = cx;
|
result._storage.ColumnIndices = ci;
|
result._storage.Normalize();
|
}
|
|
/// <summary>
|
/// Multiplies this matrix with a vector and places the results into the result vector.
|
/// </summary>
|
/// <param name="rightSide">The vector to multiply with.</param>
|
/// <param name="result">The result of the multiplication.</param>
|
protected override void DoMultiply(Vector<Complex> rightSide, Vector<Complex> result)
|
{
|
var rowPointers = _storage.RowPointers;
|
var columnIndices = _storage.ColumnIndices;
|
var values = _storage.Values;
|
|
for (var row = 0; row < RowCount; row++)
|
{
|
var startIndex = rowPointers[row];
|
var endIndex = rowPointers[row + 1];
|
|
if (startIndex == endIndex)
|
{
|
continue;
|
}
|
|
var sum = Complex.Zero;
|
for (var index = startIndex; index < endIndex; index++)
|
{
|
sum += values[index] * rightSide[columnIndices[index]];
|
}
|
|
result[row] = sum;
|
}
|
}
|
|
/// <summary>
|
/// Multiplies this matrix with transpose of another matrix and places the results into the result matrix.
|
/// </summary>
|
/// <param name="other">The matrix to multiply with.</param>
|
/// <param name="result">The result of the multiplication.</param>
|
protected override void DoTransposeAndMultiply(Matrix<Complex> other, Matrix<Complex> result)
|
{
|
if (other is SparseMatrix otherSparse && result is SparseMatrix resultSparse)
|
{
|
resultSparse.Clear();
|
|
var rowPointers = _storage.RowPointers;
|
var values = _storage.Values;
|
|
var otherStorage = otherSparse._storage;
|
|
for (var j = 0; j < RowCount; j++)
|
{
|
var startIndexOther = otherStorage.RowPointers[j];
|
var endIndexOther = otherStorage.RowPointers[j + 1];
|
|
if (startIndexOther == endIndexOther)
|
{
|
continue;
|
}
|
|
for (var i = 0; i < RowCount; i++)
|
{
|
// Multiply row of matrix A on row of matrix B
|
|
var startIndexThis = rowPointers[i];
|
var endIndexThis = rowPointers[i + 1];
|
|
if (startIndexThis == endIndexThis)
|
{
|
continue;
|
}
|
|
var sum = Complex.Zero;
|
for (var index = startIndexOther; index < endIndexOther; index++)
|
{
|
var ind = _storage.FindItem(i, otherStorage.ColumnIndices[index]);
|
if (ind >= 0)
|
{
|
sum += otherStorage.Values[index] * values[ind];
|
}
|
}
|
|
resultSparse._storage.At(i, j, sum + result.At(i, j));
|
}
|
}
|
}
|
else
|
{
|
base.DoTransposeAndMultiply(other, result);
|
}
|
}
|
|
/// <summary>
|
/// Multiplies the transpose of this matrix with a vector and places the results into the result vector.
|
/// </summary>
|
/// <param name="rightSide">The vector to multiply with.</param>
|
/// <param name="result">The result of the multiplication.</param>
|
protected override void DoTransposeThisAndMultiply(Vector<Complex> rightSide, Vector<Complex> result)
|
{
|
var rowPointers = _storage.RowPointers;
|
var columnIndices = _storage.ColumnIndices;
|
var values = _storage.Values;
|
|
for (var row = 0; row < RowCount; row++)
|
{
|
var startIndex = rowPointers[row];
|
var endIndex = rowPointers[row + 1];
|
|
if (startIndex == endIndex)
|
{
|
continue;
|
}
|
|
var rightSideValue = rightSide[row];
|
for (var index = startIndex; index < endIndex; index++)
|
{
|
result[columnIndices[index]] += values[index] * rightSideValue;
|
}
|
}
|
}
|
|
/// <summary>
|
/// Pointwise multiplies this matrix with another matrix and stores the result into the result matrix.
|
/// </summary>
|
/// <param name="other">The matrix to pointwise multiply with this one.</param>
|
/// <param name="result">The matrix to store the result of the pointwise multiplication.</param>
|
protected override void DoPointwiseMultiply(Matrix<Complex> other, Matrix<Complex> result)
|
{
|
result.Clear();
|
|
var rowPointers = _storage.RowPointers;
|
var columnIndices = _storage.ColumnIndices;
|
var values = _storage.Values;
|
|
for (var i = 0; i < RowCount; i++)
|
{
|
var endIndex = rowPointers[i + 1];
|
for (var j = rowPointers[i]; j < endIndex; j++)
|
{
|
var resVal = values[j]*other.At(i, columnIndices[j]);
|
if (!resVal.IsZero())
|
{
|
result.At(i, columnIndices[j], resVal);
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Pointwise divide this matrix by another matrix and stores the result into the result matrix.
|
/// </summary>
|
/// <param name="divisor">The matrix to pointwise divide this one by.</param>
|
/// <param name="result">The matrix to store the result of the pointwise division.</param>
|
protected override void DoPointwiseDivide(Matrix<Complex> divisor, Matrix<Complex> result)
|
{
|
result.Clear();
|
|
var rowPointers = _storage.RowPointers;
|
var columnIndices = _storage.ColumnIndices;
|
var values = _storage.Values;
|
|
for (var i = 0; i < RowCount; i++)
|
{
|
var endIndex = rowPointers[i + 1];
|
for (var j = rowPointers[i]; j < endIndex; j++)
|
{
|
if (!values[j].IsZero())
|
{
|
result.At(i, columnIndices[j], values[j]/divisor.At(i, columnIndices[j]));
|
}
|
}
|
}
|
}
|
|
public override void KroneckerProduct(Matrix<Complex> other, Matrix<Complex> result)
|
{
|
if (other == null)
|
{
|
throw new ArgumentNullException(nameof(other));
|
}
|
|
if (result == null)
|
{
|
throw new ArgumentNullException(nameof(result));
|
}
|
|
if (result.RowCount != (RowCount*other.RowCount) || result.ColumnCount != (ColumnCount*other.ColumnCount))
|
{
|
throw DimensionsDontMatch<ArgumentOutOfRangeException>(this, other, result);
|
}
|
|
var rowPointers = _storage.RowPointers;
|
var columnIndices = _storage.ColumnIndices;
|
var values = _storage.Values;
|
|
for (var i = 0; i < RowCount; i++)
|
{
|
var endIndex = rowPointers[i + 1];
|
for (var j = rowPointers[i]; j < endIndex; j++)
|
{
|
if (!values[j].IsZero())
|
{
|
result.SetSubMatrix(i*other.RowCount, other.RowCount, columnIndices[j]*other.ColumnCount, other.ColumnCount, values[j]*other);
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Evaluates whether this matrix is symmetric.
|
/// </summary>
|
public override bool IsSymmetric()
|
{
|
if (RowCount != ColumnCount)
|
{
|
return false;
|
}
|
|
var rowPointers = _storage.RowPointers;
|
var columnIndices = _storage.ColumnIndices;
|
var values = _storage.Values;
|
|
for (var row = 0; row < RowCount; row++)
|
{
|
var start = rowPointers[row];
|
var end = rowPointers[row + 1];
|
|
if (start == end)
|
{
|
continue;
|
}
|
|
for (var index = start; index < end; index++)
|
{
|
var column = columnIndices[index];
|
if (!values[index].Equals(At(column, row)))
|
{
|
return false;
|
}
|
}
|
}
|
|
return true;
|
}
|
|
/// <summary>
|
/// Evaluates whether this matrix is Hermitian (conjugate symmetric).
|
/// </summary>
|
public override bool IsHermitian()
|
{
|
if (RowCount != ColumnCount)
|
{
|
return false;
|
}
|
|
var rowPointers = _storage.RowPointers;
|
var columnIndices = _storage.ColumnIndices;
|
var values = _storage.Values;
|
|
for (var row = 0; row < RowCount; row++)
|
{
|
var start = rowPointers[row];
|
var end = rowPointers[row + 1];
|
|
if (start == end)
|
{
|
continue;
|
}
|
|
for (var index = start; index < end; index++)
|
{
|
var column = columnIndices[index];
|
if (!values[index].Equals(At(column, row).Conjugate()))
|
{
|
return false;
|
}
|
}
|
}
|
|
return true;
|
}
|
|
/// <summary>
|
/// Adds two matrices together and returns the results.
|
/// </summary>
|
/// <remarks>This operator will allocate new memory for the result. It will
|
/// choose the representation of either <paramref name="leftSide"/> or <paramref name="rightSide"/> depending on which
|
/// is denser.</remarks>
|
/// <param name="leftSide">The left matrix to add.</param>
|
/// <param name="rightSide">The right matrix to add.</param>
|
/// <returns>The result of the addition.</returns>
|
/// <exception cref="ArgumentOutOfRangeException">If <paramref name="leftSide"/> and <paramref name="rightSide"/> don't have the same dimensions.</exception>
|
/// <exception cref="ArgumentNullException">If <paramref name="leftSide"/> or <paramref name="rightSide"/> is <see langword="null" />.</exception>
|
public static SparseMatrix operator +(SparseMatrix leftSide, SparseMatrix rightSide)
|
{
|
if (rightSide == null)
|
{
|
throw new ArgumentNullException(nameof(rightSide));
|
}
|
|
if (leftSide == null)
|
{
|
throw new ArgumentNullException(nameof(leftSide));
|
}
|
|
if (leftSide.RowCount != rightSide.RowCount || leftSide.ColumnCount != rightSide.ColumnCount)
|
{
|
throw DimensionsDontMatch<ArgumentOutOfRangeException>(leftSide, rightSide);
|
}
|
|
return (SparseMatrix)leftSide.Add(rightSide);
|
}
|
|
/// <summary>
|
/// Returns a <strong>Matrix</strong> containing the same values of <paramref name="rightSide"/>.
|
/// </summary>
|
/// <param name="rightSide">The matrix to get the values from.</param>
|
/// <returns>A matrix containing a the same values as <paramref name="rightSide"/>.</returns>
|
/// <exception cref="ArgumentNullException">If <paramref name="rightSide"/> is <see langword="null" />.</exception>
|
public static SparseMatrix operator +(SparseMatrix rightSide)
|
{
|
if (rightSide == null)
|
{
|
throw new ArgumentNullException(nameof(rightSide));
|
}
|
|
return (SparseMatrix)rightSide.Clone();
|
}
|
|
/// <summary>
|
/// Subtracts two matrices together and returns the results.
|
/// </summary>
|
/// <remarks>This operator will allocate new memory for the result. It will
|
/// choose the representation of either <paramref name="leftSide"/> or <paramref name="rightSide"/> depending on which
|
/// is denser.</remarks>
|
/// <param name="leftSide">The left matrix to subtract.</param>
|
/// <param name="rightSide">The right matrix to subtract.</param>
|
/// <returns>The result of the addition.</returns>
|
/// <exception cref="ArgumentOutOfRangeException">If <paramref name="leftSide"/> and <paramref name="rightSide"/> don't have the same dimensions.</exception>
|
/// <exception cref="ArgumentNullException">If <paramref name="leftSide"/> or <paramref name="rightSide"/> is <see langword="null" />.</exception>
|
public static SparseMatrix operator -(SparseMatrix leftSide, SparseMatrix rightSide)
|
{
|
if (rightSide == null)
|
{
|
throw new ArgumentNullException(nameof(rightSide));
|
}
|
|
if (leftSide == null)
|
{
|
throw new ArgumentNullException(nameof(leftSide));
|
}
|
|
if (leftSide.RowCount != rightSide.RowCount || leftSide.ColumnCount != rightSide.ColumnCount)
|
{
|
throw DimensionsDontMatch<ArgumentOutOfRangeException>(leftSide, rightSide);
|
}
|
|
return (SparseMatrix)leftSide.Subtract(rightSide);
|
}
|
|
/// <summary>
|
/// Negates each element of the matrix.
|
/// </summary>
|
/// <param name="rightSide">The matrix to negate.</param>
|
/// <returns>A matrix containing the negated values.</returns>
|
/// <exception cref="ArgumentNullException">If <paramref name="rightSide"/> is <see langword="null" />.</exception>
|
public static SparseMatrix operator -(SparseMatrix rightSide)
|
{
|
if (rightSide == null)
|
{
|
throw new ArgumentNullException(nameof(rightSide));
|
}
|
|
return (SparseMatrix)rightSide.Negate();
|
}
|
|
/// <summary>
|
/// Multiplies a <strong>Matrix</strong> by a constant and returns the result.
|
/// </summary>
|
/// <param name="leftSide">The matrix to multiply.</param>
|
/// <param name="rightSide">The constant to multiply the matrix by.</param>
|
/// <returns>The result of the multiplication.</returns>
|
/// <exception cref="ArgumentNullException">If <paramref name="leftSide"/> is <see langword="null" />.</exception>
|
public static SparseMatrix operator *(SparseMatrix leftSide, Complex rightSide)
|
{
|
if (leftSide == null)
|
{
|
throw new ArgumentNullException(nameof(leftSide));
|
}
|
|
return (SparseMatrix)leftSide.Multiply(rightSide);
|
}
|
|
/// <summary>
|
/// Multiplies a <strong>Matrix</strong> by a constant and returns the result.
|
/// </summary>
|
/// <param name="leftSide">The matrix to multiply.</param>
|
/// <param name="rightSide">The constant to multiply the matrix by.</param>
|
/// <returns>The result of the multiplication.</returns>
|
/// <exception cref="ArgumentNullException">If <paramref name="rightSide"/> is <see langword="null" />.</exception>
|
public static SparseMatrix operator *(Complex leftSide, SparseMatrix rightSide)
|
{
|
if (rightSide == null)
|
{
|
throw new ArgumentNullException(nameof(rightSide));
|
}
|
|
return (SparseMatrix)rightSide.Multiply(leftSide);
|
}
|
|
/// <summary>
|
/// Multiplies two matrices.
|
/// </summary>
|
/// <remarks>This operator will allocate new memory for the result. It will
|
/// choose the representation of either <paramref name="leftSide"/> or <paramref name="rightSide"/> depending on which
|
/// is denser.</remarks>
|
/// <param name="leftSide">The left matrix to multiply.</param>
|
/// <param name="rightSide">The right matrix to multiply.</param>
|
/// <returns>The result of multiplication.</returns>
|
/// <exception cref="ArgumentNullException">If <paramref name="leftSide"/> or <paramref name="rightSide"/> is <see langword="null" />.</exception>
|
/// <exception cref="ArgumentException">If the dimensions of <paramref name="leftSide"/> or <paramref name="rightSide"/> don't conform.</exception>
|
public static SparseMatrix operator *(SparseMatrix leftSide, SparseMatrix rightSide)
|
{
|
if (leftSide == null)
|
{
|
throw new ArgumentNullException(nameof(leftSide));
|
}
|
|
if (rightSide == null)
|
{
|
throw new ArgumentNullException(nameof(rightSide));
|
}
|
|
if (leftSide.ColumnCount != rightSide.RowCount)
|
{
|
throw DimensionsDontMatch<ArgumentException>(leftSide, rightSide);
|
}
|
|
return (SparseMatrix)leftSide.Multiply(rightSide);
|
}
|
|
/// <summary>
|
/// Multiplies a <strong>Matrix</strong> and a Vector.
|
/// </summary>
|
/// <param name="leftSide">The matrix to multiply.</param>
|
/// <param name="rightSide">The vector to multiply.</param>
|
/// <returns>The result of multiplication.</returns>
|
/// <exception cref="ArgumentNullException">If <paramref name="leftSide"/> or <paramref name="rightSide"/> is <see langword="null" />.</exception>
|
public static SparseVector operator *(SparseMatrix leftSide, SparseVector rightSide)
|
{
|
if (leftSide == null)
|
{
|
throw new ArgumentNullException(nameof(leftSide));
|
}
|
|
return (SparseVector)leftSide.Multiply(rightSide);
|
}
|
|
/// <summary>
|
/// Multiplies a Vector and a <strong>Matrix</strong>.
|
/// </summary>
|
/// <param name="leftSide">The vector to multiply.</param>
|
/// <param name="rightSide">The matrix to multiply.</param>
|
/// <returns>The result of multiplication.</returns>
|
/// <exception cref="ArgumentNullException">If <paramref name="leftSide"/> or <paramref name="rightSide"/> is <see langword="null" />.</exception>
|
public static SparseVector operator *(SparseVector leftSide, SparseMatrix rightSide)
|
{
|
if (rightSide == null)
|
{
|
throw new ArgumentNullException(nameof(rightSide));
|
}
|
|
return (SparseVector)rightSide.LeftMultiply(leftSide);
|
}
|
|
/// <summary>
|
/// Multiplies a <strong>Matrix</strong> by a constant and returns the result.
|
/// </summary>
|
/// <param name="leftSide">The matrix to multiply.</param>
|
/// <param name="rightSide">The constant to multiply the matrix by.</param>
|
/// <returns>The result of the multiplication.</returns>
|
/// <exception cref="ArgumentNullException">If <paramref name="leftSide"/> is <see langword="null" />.</exception>
|
public static SparseMatrix operator %(SparseMatrix leftSide, Complex rightSide)
|
{
|
if (leftSide == null)
|
{
|
throw new ArgumentNullException(nameof(leftSide));
|
}
|
|
return (SparseMatrix)leftSide.Remainder(rightSide);
|
}
|
|
public override string ToTypeString()
|
{
|
return FormattableString.Invariant($"SparseMatrix {RowCount}x{ColumnCount}-Complex {NonZerosCount / (RowCount * (double) ColumnCount):P2} Filled");
|
}
|
}
|
}
|