// <copyright file="DiagonalMatrix.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2015 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using System.Diagnostics;
|
using System.Linq;
|
using IStation.Numerics.Distributions;
|
using IStation.Numerics.LinearAlgebra.Storage;
|
using IStation.Numerics.Providers.LinearAlgebra;
|
using IStation.Numerics.Threading;
|
|
namespace IStation.Numerics.LinearAlgebra.Double
|
{
|
/// <summary>
|
/// A matrix type for diagonal matrices.
|
/// </summary>
|
/// <remarks>
|
/// Diagonal matrices can be non-square matrices but the diagonal always starts
|
/// at element 0,0. A diagonal matrix will throw an exception if non diagonal
|
/// entries are set. The exception to this is when the off diagonal elements are
|
/// 0.0 or NaN; these settings will cause no change to the diagonal matrix.
|
/// </remarks>
|
[Serializable]
|
[DebuggerDisplay("DiagonalMatrix {RowCount}x{ColumnCount}-Double")]
|
public class DiagonalMatrix : Matrix
|
{
|
/// <summary>
|
/// Gets the matrix's data.
|
/// </summary>
|
/// <value>The matrix's data.</value>
|
readonly double[] _data;
|
|
/// <summary>
|
/// Create a new diagonal matrix straight from an initialized matrix storage instance.
|
/// The storage is used directly without copying.
|
/// Intended for advanced scenarios where you're working directly with
|
/// storage for performance or interop reasons.
|
/// </summary>
|
public DiagonalMatrix(DiagonalMatrixStorage<double> storage)
|
: base(storage)
|
{
|
_data = storage.Data;
|
}
|
|
/// <summary>
|
/// Create a new square diagonal matrix with the given number of rows and columns.
|
/// All cells of the matrix will be initialized to zero.
|
/// </summary>
|
/// <exception cref="ArgumentException">If the order is less than one.</exception>
|
public DiagonalMatrix(int order)
|
: this(new DiagonalMatrixStorage<double>(order, order))
|
{
|
}
|
|
/// <summary>
|
/// Create a new diagonal matrix with the given number of rows and columns.
|
/// All cells of the matrix will be initialized to zero.
|
/// </summary>
|
/// <exception cref="ArgumentException">If the row or column count is less than one.</exception>
|
public DiagonalMatrix(int rows, int columns)
|
: this(new DiagonalMatrixStorage<double>(rows, columns))
|
{
|
}
|
|
/// <summary>
|
/// Create a new diagonal matrix with the given number of rows and columns.
|
/// All diagonal cells of the matrix will be initialized to the provided value, all non-diagonal ones to zero.
|
/// </summary>
|
/// <exception cref="ArgumentException">If the row or column count is less than one.</exception>
|
public DiagonalMatrix(int rows, int columns, double diagonalValue)
|
: this(rows, columns)
|
{
|
for (var i = 0; i < _data.Length; i++)
|
{
|
_data[i] = diagonalValue;
|
}
|
}
|
|
/// <summary>
|
/// Create a new diagonal matrix with the given number of rows and columns directly binding to a raw array.
|
/// The array is assumed to contain the diagonal elements only and is used directly without copying.
|
/// Very efficient, but changes to the array and the matrix will affect each other.
|
/// </summary>
|
public DiagonalMatrix(int rows, int columns, double[] diagonalStorage)
|
: this(new DiagonalMatrixStorage<double>(rows, columns, diagonalStorage))
|
{
|
}
|
|
/// <summary>
|
/// Create a new diagonal matrix as a copy of the given other matrix.
|
/// This new matrix will be independent from the other matrix.
|
/// The matrix to copy from must be diagonal as well.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static DiagonalMatrix OfMatrix(Matrix<double> matrix)
|
{
|
return new DiagonalMatrix(DiagonalMatrixStorage<double>.OfMatrix(matrix.Storage));
|
}
|
|
/// <summary>
|
/// Create a new diagonal matrix as a copy of the given two-dimensional array.
|
/// This new matrix will be independent from the provided array.
|
/// The array to copy from must be diagonal as well.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static DiagonalMatrix OfArray(double[,] array)
|
{
|
return new DiagonalMatrix(DiagonalMatrixStorage<double>.OfArray(array));
|
}
|
|
/// <summary>
|
/// Create a new diagonal matrix and initialize each diagonal value from the provided indexed enumerable.
|
/// Keys must be provided at most once, zero is assumed if a key is omitted.
|
/// This new matrix will be independent from the enumerable.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static DiagonalMatrix OfIndexedDiagonal(int rows, int columns, IEnumerable<Tuple<int, double>> diagonal)
|
{
|
return new DiagonalMatrix(DiagonalMatrixStorage<double>.OfIndexedEnumerable(rows, columns, diagonal));
|
}
|
|
/// <summary>
|
/// Create a new diagonal matrix and initialize each diagonal value from the provided enumerable.
|
/// This new matrix will be independent from the enumerable.
|
/// A new memory block will be allocated for storing the matrix.
|
/// </summary>
|
public static DiagonalMatrix OfDiagonal(int rows, int columns, IEnumerable<double> diagonal)
|
{
|
return new DiagonalMatrix(DiagonalMatrixStorage<double>.OfEnumerable(rows, columns, diagonal));
|
}
|
|
/// <summary>
|
/// Create a new diagonal matrix and initialize each diagonal value using the provided init function.
|
/// </summary>
|
public static DiagonalMatrix Create(int rows, int columns, Func<int, double> init)
|
{
|
return new DiagonalMatrix(DiagonalMatrixStorage<double>.OfInit(rows, columns, init));
|
}
|
|
/// <summary>
|
/// Create a new square sparse identity matrix where each diagonal value is set to One.
|
/// </summary>
|
public static DiagonalMatrix CreateIdentity(int order)
|
{
|
return new DiagonalMatrix(DiagonalMatrixStorage<double>.OfValue(order, order, One));
|
}
|
|
/// <summary>
|
/// Create a new diagonal matrix with diagonal values sampled from the provided random distribution.
|
/// </summary>
|
public static DiagonalMatrix CreateRandom(int rows, int columns, IContinuousDistribution distribution)
|
{
|
return new DiagonalMatrix(new DiagonalMatrixStorage<double>(rows, columns, Generate.Random(Math.Min(rows, columns), distribution)));
|
}
|
|
/// <summary>
|
/// Negate each element of this matrix and place the results into the result matrix.
|
/// </summary>
|
/// <param name="result">The result of the negation.</param>
|
protected override void DoNegate(Matrix<double> result)
|
{
|
if (result is DiagonalMatrix diagResult)
|
{
|
LinearAlgebraControl.Provider.ScaleArray(-1, _data, diagResult._data);
|
return;
|
}
|
|
result.Clear();
|
for (var i = 0; i < _data.Length; i++)
|
{
|
result.At(i, i, -_data[i]);
|
}
|
}
|
|
/// <summary>
|
/// Adds another matrix to this matrix.
|
/// </summary>
|
/// <param name="other">The matrix to add to this matrix.</param>
|
/// <param name="result">The matrix to store the result of the addition.</param>
|
/// <exception cref="ArgumentOutOfRangeException">If the two matrices don't have the same dimensions.</exception>
|
protected override void DoAdd(Matrix<double> other, Matrix<double> result)
|
{
|
// diagonal + diagonal = diagonal
|
if (other is DiagonalMatrix diagOther && result is DiagonalMatrix diagResult)
|
{
|
LinearAlgebraControl.Provider.AddArrays(_data, diagOther._data, diagResult._data);
|
return;
|
}
|
|
other.CopyTo(result);
|
for (int i = 0; i < _data.Length; i++)
|
{
|
result.At(i, i, result.At(i, i) + _data[i]);
|
}
|
}
|
|
/// <summary>
|
/// Subtracts another matrix from this matrix.
|
/// </summary>
|
/// <param name="other">The matrix to subtract.</param>
|
/// <param name="result">The matrix to store the result of the subtraction.</param>
|
/// <exception cref="ArgumentOutOfRangeException">If the two matrices don't have the same dimensions.</exception>
|
protected override void DoSubtract(Matrix<double> other, Matrix<double> result)
|
{
|
// diagonal - diagonal = diagonal
|
if (other is DiagonalMatrix diagOther && result is DiagonalMatrix diagResult)
|
{
|
LinearAlgebraControl.Provider.SubtractArrays(_data, diagOther._data, diagResult._data);
|
return;
|
}
|
|
other.Negate(result);
|
for (int i = 0; i < _data.Length; i++)
|
{
|
result.At(i, i, result.At(i, i) + _data[i]);
|
}
|
}
|
|
/// <summary>
|
/// Multiplies each element of the matrix by a scalar and places results into the result matrix.
|
/// </summary>
|
/// <param name="scalar">The scalar to multiply the matrix with.</param>
|
/// <param name="result">The matrix to store the result of the multiplication.</param>
|
/// <exception cref="ArgumentException">If the result matrix's dimensions are not the same as this matrix.</exception>
|
protected override void DoMultiply(double scalar, Matrix<double> result)
|
{
|
if (scalar == 0.0)
|
{
|
result.Clear();
|
return;
|
}
|
|
if (scalar == 1.0)
|
{
|
CopyTo(result);
|
return;
|
}
|
|
if (result is DiagonalMatrix diagResult)
|
{
|
LinearAlgebraControl.Provider.ScaleArray(scalar, _data, diagResult._data);
|
}
|
else
|
{
|
base.DoMultiply(scalar, result);
|
}
|
}
|
|
/// <summary>
|
/// Multiplies this matrix with a vector and places the results into the result vector.
|
/// </summary>
|
/// <param name="rightSide">The vector to multiply with.</param>
|
/// <param name="result">The result of the multiplication.</param>
|
protected override void DoMultiply(Vector<double> rightSide, Vector<double> result)
|
{
|
var d = Math.Min(ColumnCount, RowCount);
|
if (d < RowCount)
|
{
|
result.ClearSubVector(ColumnCount, RowCount - ColumnCount);
|
}
|
|
if (d == ColumnCount)
|
{
|
if (rightSide.Storage is DenseVectorStorage<double> denseOther && result.Storage is DenseVectorStorage<double> denseResult)
|
{
|
LinearAlgebraControl.Provider.PointWiseMultiplyArrays(_data, denseOther.Data, denseResult.Data);
|
return;
|
}
|
}
|
|
for (var i = 0; i < d; i++)
|
{
|
result.At(i, _data[i]*rightSide.At(i));
|
}
|
}
|
|
/// <summary>
|
/// Multiplies this matrix with another matrix and places the results into the result matrix.
|
/// </summary>
|
/// <param name="other">The matrix to multiply with.</param>
|
/// <param name="result">The result of the multiplication.</param>
|
protected override void DoMultiply(Matrix<double> other, Matrix<double> result)
|
{
|
if (other is DiagonalMatrix diagonalOther && result is DiagonalMatrix diagonalResult)
|
{
|
var thisDataCopy = new double[diagonalResult._data.Length];
|
var otherDataCopy = new double[diagonalResult._data.Length];
|
Array.Copy(_data, 0, thisDataCopy, 0, (diagonalResult._data.Length > _data.Length) ? _data.Length : diagonalResult._data.Length);
|
Array.Copy(diagonalOther._data, 0, otherDataCopy, 0, (diagonalResult._data.Length > diagonalOther._data.Length) ? diagonalOther._data.Length : diagonalResult._data.Length);
|
LinearAlgebraControl.Provider.PointWiseMultiplyArrays(thisDataCopy, otherDataCopy, diagonalResult._data);
|
return;
|
}
|
|
if (other.Storage is DenseColumnMajorMatrixStorage<double> denseOther)
|
{
|
var dense = denseOther.Data;
|
var diagonal = _data;
|
var d = Math.Min(denseOther.RowCount, RowCount);
|
if (d < RowCount)
|
{
|
result.ClearSubMatrix(denseOther.RowCount, RowCount - denseOther.RowCount, 0, denseOther.ColumnCount);
|
}
|
int index = 0;
|
for (int i = 0; i < denseOther.ColumnCount; i++)
|
{
|
for (int j = 0; j < d; j++)
|
{
|
result.At(j, i, dense[index]*diagonal[j]);
|
index++;
|
}
|
index += (denseOther.RowCount - d);
|
}
|
return;
|
}
|
|
if (ColumnCount == RowCount)
|
{
|
other.Storage.MapIndexedTo(result.Storage, (i, j, x) => x*_data[i], Zeros.AllowSkip, ExistingData.Clear);
|
}
|
else
|
{
|
result.Clear();
|
other.Storage.MapSubMatrixIndexedTo(result.Storage, (i, j, x) => x*_data[i], 0, 0, Math.Min(RowCount, other.RowCount), 0, 0, other.ColumnCount, Zeros.AllowSkip, ExistingData.AssumeZeros);
|
}
|
}
|
|
/// <summary>
|
/// Multiplies this matrix with transpose of another matrix and places the results into the result matrix.
|
/// </summary>
|
/// <param name="other">The matrix to multiply with.</param>
|
/// <param name="result">The result of the multiplication.</param>
|
protected override void DoTransposeAndMultiply(Matrix<double> other, Matrix<double> result)
|
{
|
if (other is DiagonalMatrix diagonalOther && result is DiagonalMatrix diagonalResult)
|
{
|
var thisDataCopy = new double[diagonalResult._data.Length];
|
var otherDataCopy = new double[diagonalResult._data.Length];
|
Array.Copy(_data, 0, thisDataCopy, 0, (diagonalResult._data.Length > _data.Length) ? _data.Length : diagonalResult._data.Length);
|
Array.Copy(diagonalOther._data, 0, otherDataCopy, 0, (diagonalResult._data.Length > diagonalOther._data.Length) ? diagonalOther._data.Length : diagonalResult._data.Length);
|
LinearAlgebraControl.Provider.PointWiseMultiplyArrays(thisDataCopy, otherDataCopy, diagonalResult._data);
|
return;
|
}
|
|
if (other.Storage is DenseColumnMajorMatrixStorage<double> denseOther)
|
{
|
var dense = denseOther.Data;
|
var diagonal = _data;
|
var d = Math.Min(denseOther.ColumnCount, RowCount);
|
if (d < RowCount)
|
{
|
result.ClearSubMatrix(denseOther.ColumnCount, RowCount - denseOther.ColumnCount, 0, denseOther.RowCount);
|
}
|
int index = 0;
|
for (int j = 0; j < d; j++)
|
{
|
for (int i = 0; i < denseOther.RowCount; i++)
|
{
|
result.At(j, i, dense[index]*diagonal[j]);
|
index++;
|
}
|
}
|
return;
|
}
|
|
base.DoTransposeAndMultiply(other, result);
|
}
|
|
/// <summary>
|
/// Multiplies the transpose of this matrix with another matrix and places the results into the result matrix.
|
/// </summary>
|
/// <param name="other">The matrix to multiply with.</param>
|
/// <param name="result">The result of the multiplication.</param>
|
protected override void DoTransposeThisAndMultiply(Matrix<double> other, Matrix<double> result)
|
{
|
if (other is DiagonalMatrix diagonalOther && result is DiagonalMatrix diagonalResult)
|
{
|
var thisDataCopy = new double[diagonalResult._data.Length];
|
var otherDataCopy = new double[diagonalResult._data.Length];
|
Array.Copy(_data, 0, thisDataCopy, 0, (diagonalResult._data.Length > _data.Length) ? _data.Length : diagonalResult._data.Length);
|
Array.Copy(diagonalOther._data, 0, otherDataCopy, 0, (diagonalResult._data.Length > diagonalOther._data.Length) ? diagonalOther._data.Length : diagonalResult._data.Length);
|
LinearAlgebraControl.Provider.PointWiseMultiplyArrays(thisDataCopy, otherDataCopy, diagonalResult._data);
|
return;
|
}
|
|
if (other.Storage is DenseColumnMajorMatrixStorage<double> denseOther)
|
{
|
var dense = denseOther.Data;
|
var diagonal = _data;
|
var d = Math.Min(denseOther.RowCount, ColumnCount);
|
if (d < ColumnCount)
|
{
|
result.ClearSubMatrix(denseOther.RowCount, ColumnCount - denseOther.RowCount, 0, denseOther.ColumnCount);
|
}
|
int index = 0;
|
for (int i = 0; i < denseOther.ColumnCount; i++)
|
{
|
for (int j = 0; j < d; j++)
|
{
|
result.At(j, i, dense[index]*diagonal[j]);
|
index++;
|
}
|
index += (denseOther.RowCount - d);
|
}
|
return;
|
}
|
|
if (ColumnCount == RowCount)
|
{
|
other.Storage.MapIndexedTo(result.Storage, (i, j, x) => x*_data[i], Zeros.AllowSkip, ExistingData.Clear);
|
}
|
else
|
{
|
result.Clear();
|
other.Storage.MapSubMatrixIndexedTo(result.Storage, (i, j, x) => x*_data[i], 0, 0, other.RowCount, 0, 0, other.ColumnCount, Zeros.AllowSkip, ExistingData.AssumeZeros);
|
}
|
}
|
|
/// <summary>
|
/// Multiplies the transpose of this matrix with a vector and places the results into the result vector.
|
/// </summary>
|
/// <param name="rightSide">The vector to multiply with.</param>
|
/// <param name="result">The result of the multiplication.</param>
|
protected override void DoTransposeThisAndMultiply(Vector<double> rightSide, Vector<double> result)
|
{
|
var d = Math.Min(ColumnCount, RowCount);
|
if (d < ColumnCount)
|
{
|
result.ClearSubVector(RowCount, ColumnCount - RowCount);
|
}
|
|
if (d == RowCount)
|
{
|
if (rightSide.Storage is DenseVectorStorage<double> denseOther && result.Storage is DenseVectorStorage<double> denseResult)
|
{
|
LinearAlgebraControl.Provider.PointWiseMultiplyArrays(_data, denseOther.Data, denseResult.Data);
|
return;
|
}
|
}
|
|
for (var i = 0; i < d; i++)
|
{
|
result.At(i, _data[i]*rightSide.At(i));
|
}
|
}
|
|
/// <summary>
|
/// Divides each element of the matrix by a scalar and places results into the result matrix.
|
/// </summary>
|
/// <param name="divisor">The scalar to divide the matrix with.</param>
|
/// <param name="result">The matrix to store the result of the division.</param>
|
protected override void DoDivide(double divisor, Matrix<double> result)
|
{
|
if (divisor == 1.0)
|
{
|
CopyTo(result);
|
return;
|
}
|
|
if (result is DiagonalMatrix diagResult)
|
{
|
LinearAlgebraControl.Provider.ScaleArray(1.0/divisor, _data, diagResult._data);
|
return;
|
}
|
|
result.Clear();
|
for (int i = 0; i < _data.Length; i++)
|
{
|
result.At(i, i, _data[i]/divisor);
|
}
|
}
|
|
/// <summary>
|
/// Divides a scalar by each element of the matrix and stores the result in the result matrix.
|
/// </summary>
|
/// <param name="dividend">The scalar to add.</param>
|
/// <param name="result">The matrix to store the result of the division.</param>
|
protected override void DoDivideByThis(double dividend, Matrix<double> result)
|
{
|
if (result is DiagonalMatrix diagResult)
|
{
|
var resultData = diagResult._data;
|
CommonParallel.For(0, _data.Length, 4096, (a, b) =>
|
{
|
for (int i = a; i < b; i++)
|
{
|
resultData[i] = dividend/_data[i];
|
}
|
});
|
return;
|
}
|
|
result.Clear();
|
for (int i = 0; i < _data.Length; i++)
|
{
|
result.At(i, i, dividend/_data[i]);
|
}
|
}
|
|
/// <summary>
|
/// Computes the determinant of this matrix.
|
/// </summary>
|
/// <returns>The determinant of this matrix.</returns>
|
public override double Determinant()
|
{
|
if (RowCount != ColumnCount)
|
{
|
throw new ArgumentException("Matrix must be square.");
|
}
|
|
return _data.Aggregate(1.0, (current, t) => current * t);
|
}
|
|
/// <summary>
|
/// Returns the elements of the diagonal in a <see cref="DenseVector"/>.
|
/// </summary>
|
/// <returns>The elements of the diagonal.</returns>
|
/// <remarks>For non-square matrices, the method returns Min(Rows, Columns) elements where
|
/// i == j (i is the row index, and j is the column index).</remarks>
|
public override Vector<double> Diagonal()
|
{
|
return new DenseVector(_data).Clone();
|
}
|
|
/// <summary>
|
/// Copies the values of the given array to the diagonal.
|
/// </summary>
|
/// <param name="source">The array to copy the values from. The length of the vector should be
|
/// Min(Rows, Columns).</param>
|
/// <exception cref="ArgumentException">If the length of <paramref name="source"/> does not
|
/// equal Min(Rows, Columns).</exception>
|
/// <remarks>For non-square matrices, the elements of <paramref name="source"/> are copied to
|
/// this[i,i].</remarks>
|
public override void SetDiagonal(double[] source)
|
{
|
if (source.Length != _data.Length)
|
{
|
throw new ArgumentException("The array arguments must have the same length.", nameof(source));
|
}
|
|
Buffer.BlockCopy(source, 0, _data, 0, source.Length * Constants.SizeOfDouble);
|
}
|
|
/// <summary>
|
/// Copies the values of the given <see cref="Vector{T}"/> to the diagonal.
|
/// </summary>
|
/// <param name="source">The vector to copy the values from. The length of the vector should be
|
/// Min(Rows, Columns).</param>
|
/// <exception cref="ArgumentException">If the length of <paramref name="source"/> does not
|
/// equal Min(Rows, Columns).</exception>
|
/// <remarks>For non-square matrices, the elements of <paramref name="source"/> are copied to
|
/// this[i,i].</remarks>
|
public override void SetDiagonal(Vector<double> source)
|
{
|
if (source is DenseVector denseSource)
|
{
|
if (_data.Length != denseSource.Values.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.", nameof(source));
|
}
|
|
Buffer.BlockCopy(denseSource.Values, 0, _data, 0, denseSource.Values.Length * Constants.SizeOfDouble);
|
}
|
else
|
{
|
base.SetDiagonal(source);
|
}
|
}
|
|
/// <summary>Calculates the induced L1 norm of this matrix.</summary>
|
/// <returns>The maximum absolute column sum of the matrix.</returns>
|
public override double L1Norm()
|
{
|
return _data.Aggregate(0d, (current, t) => Math.Max(current, Math.Abs(t)));
|
}
|
|
/// <summary>Calculates the induced L2 norm of the matrix.</summary>
|
/// <returns>The largest singular value of the matrix.</returns>
|
public override double L2Norm()
|
{
|
return _data.Aggregate(0d, (current, t) => Math.Max(current, Math.Abs(t)));
|
}
|
|
/// <summary>Calculates the induced infinity norm of this matrix.</summary>
|
/// <returns>The maximum absolute row sum of the matrix.</returns>
|
public override double InfinityNorm()
|
{
|
return L1Norm();
|
}
|
|
/// <summary>Calculates the entry-wise Frobenius norm of this matrix.</summary>
|
/// <returns>The square root of the sum of the squared values.</returns>
|
public override double FrobeniusNorm()
|
{
|
return Math.Sqrt(_data.Sum(t => t * t));
|
}
|
|
/// <summary>Calculates the condition number of this matrix.</summary>
|
/// <returns>The condition number of the matrix.</returns>
|
public override double ConditionNumber()
|
{
|
var maxSv = double.NegativeInfinity;
|
var minSv = double.PositiveInfinity;
|
foreach (var t in _data)
|
{
|
maxSv = Math.Max(maxSv, Math.Abs(t));
|
minSv = Math.Min(minSv, Math.Abs(t));
|
}
|
|
return maxSv / minSv;
|
}
|
|
/// <summary>Computes the inverse of this matrix.</summary>
|
/// <exception cref="ArgumentException">If <see cref="DiagonalMatrix"/> is not a square matrix.</exception>
|
/// <exception cref="ArgumentException">If <see cref="DiagonalMatrix"/> is singular.</exception>
|
/// <returns>The inverse of this matrix.</returns>
|
public override Matrix<double> Inverse()
|
{
|
if (RowCount != ColumnCount)
|
{
|
throw new ArgumentException("Matrix must be square.");
|
}
|
|
var inverse = (DiagonalMatrix)Clone();
|
for (var i = 0; i < _data.Length; i++)
|
{
|
if (_data[i] != 0.0)
|
{
|
inverse._data[i] = 1.0 / _data[i];
|
}
|
else
|
{
|
throw new ArgumentException("Matrix must not be singular.");
|
}
|
}
|
|
return inverse;
|
}
|
|
/// <summary>
|
/// Returns a new matrix containing the lower triangle of this matrix.
|
/// </summary>
|
/// <returns>The lower triangle of this matrix.</returns>
|
public override Matrix<double> LowerTriangle()
|
{
|
return Clone();
|
}
|
|
/// <summary>
|
/// Puts the lower triangle of this matrix into the result matrix.
|
/// </summary>
|
/// <param name="result">Where to store the lower triangle.</param>
|
/// <exception cref="ArgumentException">If the result matrix's dimensions are not the same as this matrix.</exception>
|
public override void LowerTriangle(Matrix<double> result)
|
{
|
if (result.RowCount != RowCount || result.ColumnCount != ColumnCount)
|
{
|
throw DimensionsDontMatch<ArgumentException>(this, result, "result");
|
}
|
|
if (ReferenceEquals(this, result))
|
{
|
return;
|
}
|
|
result.Clear();
|
for (var i = 0; i < _data.Length; i++)
|
{
|
result.At(i, i, _data[i]);
|
}
|
}
|
|
/// <summary>
|
/// Returns a new matrix containing the lower triangle of this matrix. The new matrix
|
/// does not contain the diagonal elements of this matrix.
|
/// </summary>
|
/// <returns>The lower triangle of this matrix.</returns>
|
public override Matrix<double> StrictlyLowerTriangle()
|
{
|
return new DiagonalMatrix(RowCount, ColumnCount);
|
}
|
|
/// <summary>
|
/// Puts the strictly lower triangle of this matrix into the result matrix.
|
/// </summary>
|
/// <param name="result">Where to store the lower triangle.</param>
|
/// <exception cref="ArgumentException">If the result matrix's dimensions are not the same as this matrix.</exception>
|
public override void StrictlyLowerTriangle(Matrix<double> result)
|
{
|
if (result.RowCount != RowCount || result.ColumnCount != ColumnCount)
|
{
|
throw DimensionsDontMatch<ArgumentException>(this, result, "result");
|
}
|
|
result.Clear();
|
}
|
|
/// <summary>
|
/// Returns a new matrix containing the upper triangle of this matrix.
|
/// </summary>
|
/// <returns>The upper triangle of this matrix.</returns>
|
public override Matrix<double> UpperTriangle()
|
{
|
return Clone();
|
}
|
|
/// <summary>
|
/// Puts the upper triangle of this matrix into the result matrix.
|
/// </summary>
|
/// <param name="result">Where to store the lower triangle.</param>
|
/// <exception cref="ArgumentException">If the result matrix's dimensions are not the same as this matrix.</exception>
|
public override void UpperTriangle(Matrix<double> result)
|
{
|
if (result.RowCount != RowCount || result.ColumnCount != ColumnCount)
|
{
|
throw DimensionsDontMatch<ArgumentException>(this, result, "result");
|
}
|
|
result.Clear();
|
for (var i = 0; i < _data.Length; i++)
|
{
|
result.At(i, i, _data[i]);
|
}
|
}
|
|
/// <summary>
|
/// Returns a new matrix containing the upper triangle of this matrix. The new matrix
|
/// does not contain the diagonal elements of this matrix.
|
/// </summary>
|
/// <returns>The upper triangle of this matrix.</returns>
|
public override Matrix<double> StrictlyUpperTriangle()
|
{
|
return new DiagonalMatrix(RowCount, ColumnCount);
|
}
|
|
/// <summary>
|
/// Puts the strictly upper triangle of this matrix into the result matrix.
|
/// </summary>
|
/// <param name="result">Where to store the lower triangle.</param>
|
/// <exception cref="ArgumentException">If the result matrix's dimensions are not the same as this matrix.</exception>
|
public override void StrictlyUpperTriangle(Matrix<double> result)
|
{
|
if (result.RowCount != RowCount || result.ColumnCount != ColumnCount)
|
{
|
throw DimensionsDontMatch<ArgumentException>(this, result, "result");
|
}
|
|
result.Clear();
|
}
|
|
/// <summary>
|
/// Creates a matrix that contains the values from the requested sub-matrix.
|
/// </summary>
|
/// <param name="rowIndex">The row to start copying from.</param>
|
/// <param name="rowCount">The number of rows to copy. Must be positive.</param>
|
/// <param name="columnIndex">The column to start copying from.</param>
|
/// <param name="columnCount">The number of columns to copy. Must be positive.</param>
|
/// <returns>The requested sub-matrix.</returns>
|
/// <exception cref="ArgumentOutOfRangeException">If: <list><item><paramref name="rowIndex"/> is
|
/// negative, or greater than or equal to the number of rows.</item>
|
/// <item><paramref name="columnIndex"/> is negative, or greater than or equal to the number
|
/// of columns.</item>
|
/// <item><c>(columnIndex + columnLength) >= Columns</c></item>
|
/// <item><c>(rowIndex + rowLength) >= Rows</c></item></list></exception>
|
/// <exception cref="ArgumentOutOfRangeException">If <paramref name="rowCount"/> or <paramref name="columnCount"/>
|
/// is not positive.</exception>
|
public override Matrix<double> SubMatrix(int rowIndex, int rowCount, int columnIndex, int columnCount)
|
{
|
var target = rowIndex == columnIndex
|
? (Matrix<double>)new DiagonalMatrix(rowCount, columnCount)
|
: new SparseMatrix(rowCount, columnCount);
|
|
Storage.CopySubMatrixTo(target.Storage, rowIndex, 0, rowCount, columnIndex, 0, columnCount, ExistingData.AssumeZeros);
|
return target;
|
}
|
|
/// <summary>
|
/// Permute the columns of a matrix according to a permutation.
|
/// </summary>
|
/// <param name="p">The column permutation to apply to this matrix.</param>
|
/// <exception cref="InvalidOperationException">Always thrown</exception>
|
/// <remarks>Permutation in diagonal matrix are senseless, because of matrix nature</remarks>
|
public override void PermuteColumns(Permutation p)
|
{
|
throw new InvalidOperationException("Permutations in diagonal matrix are not allowed");
|
}
|
|
/// <summary>
|
/// Permute the rows of a matrix according to a permutation.
|
/// </summary>
|
/// <param name="p">The row permutation to apply to this matrix.</param>
|
/// <exception cref="InvalidOperationException">Always thrown</exception>
|
/// <remarks>Permutation in diagonal matrix are senseless, because of matrix nature</remarks>
|
public override void PermuteRows(Permutation p)
|
{
|
throw new InvalidOperationException("Permutations in diagonal matrix are not allowed");
|
}
|
|
/// <summary>
|
/// Evaluates whether this matrix is symmetric.
|
/// </summary>
|
public sealed override bool IsSymmetric()
|
{
|
return true;
|
}
|
|
/// <summary>
|
/// Computes the canonical modulus, where the result has the sign of the divisor,
|
/// for the given divisor each element of the matrix.
|
/// </summary>
|
/// <param name="divisor">The scalar denominator to use.</param>
|
/// <param name="result">Matrix to store the results in.</param>
|
protected override void DoModulus(double divisor, Matrix<double> result)
|
{
|
if (result is DiagonalMatrix diagonalResult)
|
{
|
CommonParallel.For(0, _data.Length, 4096, (a, b) =>
|
{
|
var r = diagonalResult._data;
|
for (var i = a; i < b; i++)
|
{
|
r[i] = Euclid.Modulus(_data[i], divisor);
|
}
|
});
|
}
|
else
|
{
|
base.DoModulus(divisor, result);
|
}
|
}
|
|
/// <summary>
|
/// Computes the canonical modulus, where the result has the sign of the divisor,
|
/// for the given dividend for each element of the matrix.
|
/// </summary>
|
/// <param name="dividend">The scalar numerator to use.</param>
|
/// <param name="result">A vector to store the results in.</param>
|
protected override void DoModulusByThis(double dividend, Matrix<double> result)
|
{
|
if (result is DiagonalMatrix diagonalResult)
|
{
|
CommonParallel.For(0, _data.Length, 4096, (a, b) =>
|
{
|
var r = diagonalResult._data;
|
for (var i = a; i < b; i++)
|
{
|
r[i] = Euclid.Modulus(dividend, _data[i]);
|
}
|
});
|
}
|
else
|
{
|
base.DoModulusByThis(dividend, result);
|
}
|
}
|
|
/// <summary>
|
/// Computes the remainder (% operator), where the result has the sign of the dividend,
|
/// for the given divisor each element of the matrix.
|
/// </summary>
|
/// <param name="divisor">The scalar denominator to use.</param>
|
/// <param name="result">Matrix to store the results in.</param>
|
protected override void DoRemainder(double divisor, Matrix<double> result)
|
{
|
if (result is DiagonalMatrix diagonalResult)
|
{
|
CommonParallel.For(0, _data.Length, 4096, (a, b) =>
|
{
|
var r = diagonalResult._data;
|
for (var i = a; i < b; i++)
|
{
|
r[i] = _data[i] % divisor;
|
}
|
});
|
}
|
else
|
{
|
base.DoRemainder(divisor, result);
|
}
|
}
|
|
/// <summary>
|
/// Computes the remainder (% operator), where the result has the sign of the dividend,
|
/// for the given dividend for each element of the matrix.
|
/// </summary>
|
/// <param name="dividend">The scalar numerator to use.</param>
|
/// <param name="result">A vector to store the results in.</param>
|
protected override void DoRemainderByThis(double dividend, Matrix<double> result)
|
{
|
if (result is DiagonalMatrix diagonalResult)
|
{
|
CommonParallel.For(0, _data.Length, 4096, (a, b) =>
|
{
|
var r = diagonalResult._data;
|
for (var i = a; i < b; i++)
|
{
|
r[i] = dividend % _data[i];
|
}
|
});
|
}
|
else
|
{
|
base.DoRemainderByThis(dividend, result);
|
}
|
}
|
}
|
}
|