// <copyright file="DenseGramSchmidt.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using IStation.Numerics.LinearAlgebra.Factorization;
|
using IStation.Numerics.Providers.LinearAlgebra;
|
|
namespace IStation.Numerics.LinearAlgebra.Double.Factorization
|
{
|
/// <summary>
|
/// <para>A class which encapsulates the functionality of the QR decomposition Modified Gram-Schmidt Orthogonalization.</para>
|
/// <para>Any real square matrix A may be decomposed as A = QR where Q is an orthogonal mxn matrix and R is an nxn upper triangular matrix.</para>
|
/// </summary>
|
/// <remarks>
|
/// The computation of the QR decomposition is done at construction time by modified Gram-Schmidt Orthogonalization.
|
/// </remarks>
|
internal sealed class DenseGramSchmidt : GramSchmidt
|
{
|
/// <summary>
|
/// Initializes a new instance of the <see cref="DenseGramSchmidt"/> class. This object creates an orthogonal matrix
|
/// using the modified Gram-Schmidt method.
|
/// </summary>
|
/// <param name="matrix">The matrix to factor.</param>
|
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
|
/// <exception cref="ArgumentException">If <paramref name="matrix"/> row count is less then column count</exception>
|
/// <exception cref="ArgumentException">If <paramref name="matrix"/> is rank deficient</exception>
|
public static DenseGramSchmidt Create(Matrix<double> matrix)
|
{
|
if (matrix.RowCount < matrix.ColumnCount)
|
{
|
throw Matrix.DimensionsDontMatch<ArgumentException>(matrix);
|
}
|
|
var q = (DenseMatrix)matrix.Clone();
|
var r = new DenseMatrix(matrix.ColumnCount, matrix.ColumnCount);
|
Factorize(q.Values, q.RowCount, q.ColumnCount, r.Values);
|
|
return new DenseGramSchmidt(q, r);
|
}
|
|
DenseGramSchmidt(Matrix<double> q, Matrix<double> rFull)
|
: base(q, rFull)
|
{
|
}
|
|
/// <summary>
|
/// Factorize matrix using the modified Gram-Schmidt method.
|
/// </summary>
|
/// <param name="q">Initial matrix. On exit is replaced by <see cref="Matrix{T}"/> Q.</param>
|
/// <param name="rowsQ">Number of rows in <see cref="Matrix{T}"/> Q.</param>
|
/// <param name="columnsQ">Number of columns in <see cref="Matrix{T}"/> Q.</param>
|
/// <param name="r">On exit is filled by <see cref="Matrix{T}"/> R.</param>
|
private static void Factorize(double[] q, int rowsQ, int columnsQ, double[] r)
|
{
|
for (var k = 0; k < columnsQ; k++)
|
{
|
var norm = 0.0;
|
for (var i = 0; i < rowsQ; i++)
|
{
|
norm += q[(k * rowsQ) + i] * q[(k * rowsQ) + i];
|
}
|
|
norm = Math.Sqrt(norm);
|
if (norm == 0.0)
|
{
|
throw new ArgumentException("Matrix must not be rank deficient.");
|
}
|
|
r[(k * columnsQ) + k] = norm;
|
for (var i = 0; i < rowsQ; i++)
|
{
|
q[(k * rowsQ) + i] /= norm;
|
}
|
|
for (var j = k + 1; j < columnsQ; j++)
|
{
|
var k1 = k;
|
var j1 = j;
|
|
var dot = 0.0;
|
for (var index = 0; index < rowsQ; index++)
|
{
|
dot += q[(k1 * rowsQ) + index] * q[(j1 * rowsQ) + index];
|
}
|
|
r[(j * columnsQ) + k] = dot;
|
for (var i = 0; i < rowsQ; i++)
|
{
|
var value = q[(j * rowsQ) + i] - (q[(k * rowsQ) + i] * dot);
|
q[(j * rowsQ) + i] = value;
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>AX = B</b>, with A QR factorized.
|
/// </summary>
|
/// <param name="input">The right hand side <see cref="Matrix{T}"/>, <b>B</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>X</b>.</param>
|
public override void Solve(Matrix<double> input, Matrix<double> result)
|
{
|
// The solution X should have the same number of columns as B
|
if (input.ColumnCount != result.ColumnCount)
|
{
|
throw new ArgumentException("Matrix column dimensions must agree.");
|
}
|
|
// The dimension compatibility conditions for X = A\B require the two matrices A and B to have the same number of rows
|
if (Q.RowCount != input.RowCount)
|
{
|
throw new ArgumentException("Matrix row dimensions must agree.");
|
}
|
|
// The solution X row dimension is equal to the column dimension of A
|
if (Q.ColumnCount != result.RowCount)
|
{
|
throw new ArgumentException("Matrix column dimensions must agree.");
|
}
|
|
if (input is DenseMatrix dinput && result is DenseMatrix dresult)
|
{
|
LinearAlgebraControl.Provider.QRSolveFactored(((DenseMatrix) Q).Values, ((DenseMatrix) FullR).Values, Q.RowCount, FullR.ColumnCount, null, dinput.Values, input.ColumnCount, dresult.Values, QRMethod.Thin);
|
}
|
else
|
{
|
throw new NotSupportedException("Can only do GramSchmidt factorization for dense matrices at the moment.");
|
}
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>Ax = b</b>, with A QR factorized.
|
/// </summary>
|
/// <param name="input">The right hand side vector, <b>b</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>x</b>.</param>
|
public override void Solve(Vector<double> input, Vector<double> result)
|
{
|
// Ax=b where A is an m x n matrix
|
// Check that b is a column vector with m entries
|
if (Q.RowCount != input.Count)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
// Check that x is a column vector with n entries
|
if (Q.ColumnCount != result.Count)
|
{
|
throw Matrix.DimensionsDontMatch<ArgumentException>(Q, result);
|
}
|
|
if (input is DenseVector dinput && result is DenseVector dresult)
|
{
|
LinearAlgebraControl.Provider.QRSolveFactored(((DenseMatrix) Q).Values, ((DenseMatrix) FullR).Values, Q.RowCount, FullR.ColumnCount, null, dinput.Values, 1, dresult.Values, QRMethod.Thin);
|
}
|
else
|
{
|
throw new NotSupportedException("Can only do GramSchmidt factorization for dense vectors at the moment.");
|
}
|
}
|
}
|
}
|