// <copyright file="DenseSvd.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using IStation.Numerics.Providers.LinearAlgebra;
|
|
namespace IStation.Numerics.LinearAlgebra.Double.Factorization
|
{
|
/// <summary>
|
/// <para>A class which encapsulates the functionality of the singular value decomposition (SVD) for <see cref="DenseMatrix"/>.</para>
|
/// <para>Suppose M is an m-by-n matrix whose entries are real numbers.
|
/// Then there exists a factorization of the form M = UΣVT where:
|
/// - U is an m-by-m unitary matrix;
|
/// - Σ is m-by-n diagonal matrix with nonnegative real numbers on the diagonal;
|
/// - VT denotes transpose of V, an n-by-n unitary matrix;
|
/// Such a factorization is called a singular-value decomposition of M. A common convention is to order the diagonal
|
/// entries Σ(i,i) in descending order. In this case, the diagonal matrix Σ is uniquely determined
|
/// by M (though the matrices U and V are not). The diagonal entries of Σ are known as the singular values of M.</para>
|
/// </summary>
|
/// <remarks>
|
/// The computation of the singular value decomposition is done at construction time.
|
/// </remarks>
|
internal sealed class DenseSvd : Svd
|
{
|
/// <summary>
|
/// Initializes a new instance of the <see cref="DenseSvd"/> class. This object will compute the
|
/// the singular value decomposition when the constructor is called and cache it's decomposition.
|
/// </summary>
|
/// <param name="matrix">The matrix to factor.</param>
|
/// <param name="computeVectors">Compute the singular U and VT vectors or not.</param>
|
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
|
/// <exception cref="ArgumentException">If SVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
|
public static DenseSvd Create(DenseMatrix matrix, bool computeVectors)
|
{
|
var nm = Math.Min(matrix.RowCount, matrix.ColumnCount);
|
var s = new DenseVector(nm);
|
var u = new DenseMatrix(matrix.RowCount);
|
var vt = new DenseMatrix(matrix.ColumnCount);
|
LinearAlgebraControl.Provider.SingularValueDecomposition(computeVectors, ((DenseMatrix) matrix.Clone()).Values, matrix.RowCount, matrix.ColumnCount, s.Values, u.Values, vt.Values);
|
|
return new DenseSvd(s, u, vt, computeVectors);
|
}
|
|
DenseSvd(Vector<double> s, Matrix<double> u, Matrix<double> vt, bool vectorsComputed)
|
: base(s, u, vt, vectorsComputed)
|
{
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>AX = B</b>, with A SVD factorized.
|
/// </summary>
|
/// <param name="input">The right hand side <see cref="Matrix{T}"/>, <b>B</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>X</b>.</param>
|
public override void Solve(Matrix<double> input, Matrix<double> result)
|
{
|
if (!VectorsComputed)
|
{
|
throw new InvalidOperationException("The singular vectors were not computed.");
|
}
|
|
// The solution X should have the same number of columns as B
|
if (input.ColumnCount != result.ColumnCount)
|
{
|
throw new ArgumentException("Matrix column dimensions must agree.");
|
}
|
|
// The dimension compatibility conditions for X = A\B require the two matrices A and B to have the same number of rows
|
if (U.RowCount != input.RowCount)
|
{
|
throw new ArgumentException("Matrix row dimensions must agree.");
|
}
|
|
// The solution X row dimension is equal to the column dimension of A
|
if (VT.ColumnCount != result.RowCount)
|
{
|
throw new ArgumentException("Matrix column dimensions must agree.");
|
}
|
|
if (input is DenseMatrix dinput && result is DenseMatrix dresult)
|
{
|
LinearAlgebraControl.Provider.SvdSolveFactored(U.RowCount, VT.ColumnCount, ((DenseVector) S).Values, ((DenseMatrix) U).Values, ((DenseMatrix) VT).Values, dinput.Values, input.ColumnCount, dresult.Values);
|
}
|
else
|
{
|
throw new NotSupportedException("Can only do SVD factorization for dense matrices at the moment.");
|
}
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>Ax = b</b>, with A SVD factorized.
|
/// </summary>
|
/// <param name="input">The right hand side vector, <b>b</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>x</b>.</param>
|
public override void Solve(Vector<double> input, Vector<double> result)
|
{
|
if (!VectorsComputed)
|
{
|
throw new InvalidOperationException("The singular vectors were not computed.");
|
}
|
|
// Ax=b where A is an m x n matrix
|
// Check that b is a column vector with m entries
|
if (U.RowCount != input.Count)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
// Check that x is a column vector with n entries
|
if (VT.ColumnCount != result.Count)
|
{
|
throw Matrix.DimensionsDontMatch<ArgumentException>(VT, result);
|
}
|
|
if (input is DenseVector dinput && result is DenseVector dresult)
|
{
|
LinearAlgebraControl.Provider.SvdSolveFactored(U.RowCount, VT.ColumnCount, ((DenseVector) S).Values, ((DenseMatrix) U).Values, ((DenseMatrix) VT).Values, dinput.Values, 1, dresult.Values);
|
}
|
else
|
{
|
throw new NotSupportedException("Can only do SVD factorization for dense vectors at the moment.");
|
}
|
}
|
}
|
}
|