// <copyright file="GramSchmidt.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using IStation.Numerics.LinearAlgebra.Factorization;
|
|
namespace IStation.Numerics.LinearAlgebra.Double.Factorization
|
{
|
/// <summary>
|
/// <para>A class which encapsulates the functionality of the QR decomposition Modified Gram-Schmidt Orthogonalization.</para>
|
/// <para>Any real square matrix A may be decomposed as A = QR where Q is an orthogonal mxn matrix and R is an nxn upper triangular matrix.</para>
|
/// </summary>
|
/// <remarks>
|
/// The computation of the QR decomposition is done at construction time by modified Gram-Schmidt Orthogonalization.
|
/// </remarks>
|
internal abstract class GramSchmidt : GramSchmidt<double>
|
{
|
protected GramSchmidt(Matrix<double> q, Matrix<double> rFull)
|
: base(q,rFull)
|
{
|
}
|
|
/// <summary>
|
/// Gets the absolute determinant value of the matrix for which the QR matrix was computed.
|
/// </summary>
|
public override double Determinant
|
{
|
get
|
{
|
if (FullR.RowCount != FullR.ColumnCount)
|
{
|
throw new ArgumentException("Matrix must be square.");
|
}
|
|
var det = 1.0;
|
for (var i = 0; i < FullR.ColumnCount; i++)
|
{
|
det *= FullR.At(i, i);
|
if (Math.Abs(FullR.At(i, i)).AlmostEqual(0.0))
|
{
|
return 0;
|
}
|
}
|
|
return Convert.ToSingle(Math.Abs(det));
|
}
|
}
|
|
/// <summary>
|
/// Gets a value indicating whether the matrix is full rank or not.
|
/// </summary>
|
/// <value><c>true</c> if the matrix is full rank; otherwise <c>false</c>.</value>
|
public override bool IsFullRank
|
{
|
get
|
{
|
for (var i = 0; i < FullR.ColumnCount; i++)
|
{
|
if (Math.Abs(FullR.At(i, i)).AlmostEqual(0.0))
|
{
|
return false;
|
}
|
}
|
|
return true;
|
}
|
}
|
}
|
}
|