// <copyright file="QR.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
|
namespace IStation.Numerics.LinearAlgebra.Factorization
|
{
|
/// <summary>
|
/// The type of QR factorization go perform.
|
/// </summary>
|
public enum QRMethod
|
{
|
/// <summary>
|
/// Compute the full QR factorization of a matrix.
|
/// </summary>
|
Full = 0,
|
|
/// <summary>
|
/// Compute the thin QR factorization of a matrix.
|
/// </summary>
|
Thin = 1
|
}
|
|
/// <summary>
|
/// <para>A class which encapsulates the functionality of the QR decomposition.</para>
|
/// <para>Any real square matrix A (m x n) may be decomposed as A = QR where Q is an orthogonal matrix
|
/// (its columns are orthogonal unit vectors meaning QTQ = I) and R is an upper triangular matrix
|
/// (also called right triangular matrix).</para>
|
/// </summary>
|
/// <remarks>
|
/// The computation of the QR decomposition is done at construction time by Householder transformation.
|
/// If a <seealso cref="QRMethod.Full"/> factorization is performed, the resulting Q matrix is an m x m matrix
|
/// and the R matrix is an m x n matrix. If a <seealso cref="QRMethod.Thin"/> factorization is performed, the
|
/// resulting Q matrix is an m x n matrix and the R matrix is an n x n matrix.
|
/// </remarks>
|
/// <typeparam name="T">Supported data types are double, single, <see cref="Complex"/>, and <see cref="Complex32"/>.</typeparam>
|
public abstract class QR<T> : ISolver<T>
|
where T : struct, IEquatable<T>, IFormattable
|
{
|
readonly Lazy<Matrix<T>> _lazyR;
|
|
protected readonly Matrix<T> FullR;
|
protected readonly QRMethod Method;
|
|
protected QR(Matrix<T> q, Matrix<T> rFull, QRMethod method)
|
{
|
Q = q;
|
FullR = rFull;
|
Method = method;
|
|
_lazyR = new Lazy<Matrix<T>>(FullR.UpperTriangle);
|
}
|
|
/// <summary>
|
/// Gets or sets orthogonal Q matrix
|
/// </summary>
|
public Matrix<T> Q { get; }
|
|
/// <summary>
|
/// Gets the upper triangular factor R.
|
/// </summary>
|
public Matrix<T> R => _lazyR.Value;
|
|
/// <summary>
|
/// Gets the absolute determinant value of the matrix for which the QR matrix was computed.
|
/// </summary>
|
public abstract T Determinant { get; }
|
|
/// <summary>
|
/// Gets a value indicating whether the matrix is full rank or not.
|
/// </summary>
|
/// <value><c>true</c> if the matrix is full rank; otherwise <c>false</c>.</value>
|
public abstract bool IsFullRank { get; }
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>AX = B</b>, with A QR factorized.
|
/// </summary>
|
/// <param name="input">The right hand side <see cref="Matrix{T}"/>, <b>B</b>.</param>
|
/// <returns>The left hand side <see cref="Matrix{T}"/>, <b>X</b>.</returns>
|
public virtual Matrix<T> Solve(Matrix<T> input)
|
{
|
var x = Matrix<T>.Build.SameAs(input, FullR.ColumnCount, input.ColumnCount, fullyMutable: true);
|
Solve(input, x);
|
return x;
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>AX = B</b>, with A QR factorized.
|
/// </summary>
|
/// <param name="input">The right hand side <see cref="Matrix{T}"/>, <b>B</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>X</b>.</param>
|
public abstract void Solve(Matrix<T> input, Matrix<T> result);
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>Ax = b</b>, with A QR factorized.
|
/// </summary>
|
/// <param name="input">The right hand side vector, <b>b</b>.</param>
|
/// <returns>The left hand side <see cref="Vector{T}"/>, <b>x</b>.</returns>
|
public virtual Vector<T> Solve(Vector<T> input)
|
{
|
var x = Vector<T>.Build.SameAs(input, FullR.ColumnCount);
|
Solve(input, x);
|
return x;
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>Ax = b</b>, with A QR factorized.
|
/// </summary>
|
/// <param name="input">The right hand side vector, <b>b</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>x</b>.</param>
|
public abstract void Solve(Vector<T> input, Vector<T> result);
|
}
|
}
|