// <copyright file="Test.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2014 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Linq;
|
|
// ReSharper disable CheckNamespace
|
namespace IStation.Numerics
|
// ReSharper restore CheckNamespace
|
{
|
public static class TestFunctions
|
{
|
/// <summary>
|
/// Valley-shaped Rosenbrock function for 2 dimensions: (x,y) -> (1-x)^2 + 100*(y-x^2)^2.
|
/// This function has a global minimum at (1,1) with f(1,1) = 0.
|
/// Common range: [-5,10] or [-2.048,2.048].
|
/// </summary>
|
/// <remarks>
|
/// https://en.wikipedia.org/wiki/Rosenbrock_function
|
/// http://www.sfu.ca/~ssurjano/rosen.html
|
/// </remarks>
|
public static double Rosenbrock(double x, double y)
|
{
|
double a = 1.0 - x;
|
double b = y - x*x;
|
return a*a + 100*b*b;
|
}
|
|
/// <summary>
|
/// Valley-shaped Rosenbrock function for 2 or more dimensions.
|
/// This function have a global minimum of all ones and, for 8 > N > 3, a local minimum at (-1,1,...,1).
|
/// </summary>
|
/// <remarks>
|
/// https://en.wikipedia.org/wiki/Rosenbrock_function
|
/// http://www.sfu.ca/~ssurjano/rosen.html
|
/// </remarks>
|
public static double Rosenbrock(params double[] x)
|
{
|
double sum = 0;
|
for (int i = 1; i < x.Length; i++)
|
{
|
sum += Rosenbrock(x[i - 1], x[i]);
|
}
|
|
return sum;
|
}
|
|
/// <summary>
|
/// Himmelblau, a multi-modal function: (x,y) -> (x^2+y-11)^2 + (x+y^2-7)^2
|
/// This function has 4 global minima with f(x,y) = 0.
|
/// Common range: [-6,6].
|
/// Named after David Mautner Himmelblau
|
/// </summary>
|
/// <remarks>
|
/// https://en.wikipedia.org/wiki/Himmelblau%27s_function
|
/// </remarks>
|
public static double Himmelblau(double x, double y)
|
{
|
double a = x*x + y - 11.0;
|
double b = x + y*y - 7.0;
|
return a*a + b*b;
|
}
|
|
/// <summary>
|
/// Rastrigin, a highly multi-modal function with many local minima.
|
/// Global minimum of all zeros with f(0) = 0.
|
/// Common range: [-5.12,5.12].
|
/// </summary>
|
/// <remarks>
|
/// https://en.wikipedia.org/wiki/Rastrigin_function
|
/// http://www.sfu.ca/~ssurjano/rastr.html
|
/// </remarks>
|
public static double Rastrigin(params double[] x)
|
{
|
return x.Sum(xi => xi*xi - 10.0*Math.Cos(Constants.Pi2*xi)) + 10.0*x.Length;
|
}
|
|
/// <summary>
|
/// Drop-Wave, a multi-modal and highly complex function with many local minima.
|
/// Global minimum of all zeros with f(0) = -1.
|
/// Common range: [-5.12,5.12].
|
/// </summary>
|
/// <remarks>
|
/// http://www.sfu.ca/~ssurjano/drop.html
|
/// </remarks>
|
public static double DropWave(double x, double y)
|
{
|
double t = x*x + y*y;
|
return -(1.0 + Math.Cos(12.0*Math.Sqrt(t)))/(0.5*t + 2.0);
|
}
|
|
/// <summary>
|
/// Ackley, a function with many local minima. It is nearly flat in outer regions but has a large hole at the center.
|
/// Global minimum of all zeros with f(0) = 0.
|
/// Common range: [-32.768, 32.768].
|
/// </summary>
|
/// <remarks>
|
/// http://www.sfu.ca/~ssurjano/ackley.html
|
/// </remarks>
|
public static double Ackley(params double[] x)
|
{
|
double u = x.Sum(xi => xi*xi)/x.Length;
|
double v = x.Sum(xi => Math.Cos(Constants.Pi2*xi))/x.Length;
|
return -20*Math.Exp(-0.2*Math.Sqrt(u)) - Math.Exp(v) + 20 + Math.E;
|
}
|
|
/// <summary>
|
/// Bowl-shaped first Bohachevsky function.
|
/// Global minimum of all zeros with f(0,0) = 0.
|
/// Common range: [-100, 100]
|
/// </summary>
|
/// <remarks>
|
/// http://www.sfu.ca/~ssurjano/boha.html
|
/// </remarks>
|
public static double Bohachevsky1(double x, double y)
|
{
|
return x*x + 2*y*y - 0.3*Math.Cos(3*Math.PI*x) - 0.4*Math.Cos(4*Math.PI*y);
|
}
|
|
/// <summary>
|
/// Plate-shaped Matyas function.
|
/// Global minimum of all zeros with f(0,0) = 0.
|
/// Common range: [-10, 10].
|
/// </summary>
|
/// <remarks>
|
/// http://www.sfu.ca/~ssurjano/matya.html
|
/// </remarks>
|
public static double Matyas(double x, double y)
|
{
|
return 0.26*(x*x + y*y) - 0.48*x*y;
|
}
|
|
/// <summary>
|
/// Valley-shaped six-hump camel back function.
|
/// Two global minima and four local minima. Global minima with f(x) ) -1.0316 at (0.0898,-0.7126) and (-0.0898,0.7126).
|
/// Common range: x in [-3,3], y in [-2,2].
|
/// </summary>
|
/// <remarks>
|
/// http://www.sfu.ca/~ssurjano/camel6.html
|
/// </remarks>
|
public static double SixHumpCamel(double x, double y)
|
{
|
double x2 = x*x;
|
double y2 = y*y;
|
return (4 - 2.1*x2 + x2*x2/3)*x2 + x*y + (-4 + 4*y2)*y2;
|
}
|
}
|
}
|