tangxu
2022-10-24 805b967b4ee65cd5022cad20451299f6ce56c949
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
// <copyright file="NewtonMinimizer.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2017 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
 
using System;
using IStation.Numerics.LinearAlgebra;
using IStation.Numerics.Optimization.LineSearch;
 
namespace IStation.Numerics.Optimization
{
    public sealed class NewtonMinimizer : IUnconstrainedMinimizer
    {
        public double GradientTolerance { get; set; }
        public int MaximumIterations { get; set; }
        public bool UseLineSearch { get; set; }
 
        public NewtonMinimizer(double gradientTolerance, int maximumIterations, bool useLineSearch = false)
        {
            GradientTolerance = gradientTolerance;
            MaximumIterations = maximumIterations;
            UseLineSearch = useLineSearch;
        }
 
        public MinimizationResult FindMinimum(IObjectiveFunction objective, Vector<double> initialGuess)
        {
            return Minimum(objective, initialGuess, GradientTolerance, MaximumIterations, UseLineSearch);
        }
 
        public static MinimizationResult Minimum(IObjectiveFunction objective, Vector<double> initialGuess, double gradientTolerance=1e-8, int maxIterations=1000, bool useLineSearch=false)
        {
            if (!objective.IsGradientSupported)
            {
                throw new IncompatibleObjectiveException("Gradient not supported in objective function, but required for Newton minimization.");
            }
 
            if (!objective.IsHessianSupported)
            {
                throw new IncompatibleObjectiveException("Hessian not supported in objective function, but required for Newton minimization.");
            }
 
            // Check that we're not already done
            objective.EvaluateAt(initialGuess);
            ValidateGradient(objective);
            if (objective.Gradient.Norm(2.0) < gradientTolerance)
            {
                return new MinimizationResult(objective, 0, ExitCondition.AbsoluteGradient);
            }
 
            // Set up line search algorithm
            var lineSearcher = new WeakWolfeLineSearch(1e-4, 0.9, 1e-4, maxIterations: 1000);
 
            // Subsequent steps
            int iterations = 0;
            int totalLineSearchSteps = 0;
            int iterationsWithNontrivialLineSearch = 0;
            bool tmpLineSearch = false;
            while (objective.Gradient.Norm(2.0) >= gradientTolerance && iterations < maxIterations)
            {
                ValidateHessian(objective);
 
                var searchDirection = objective.Hessian.LU().Solve(-objective.Gradient);
                if (searchDirection * objective.Gradient >= 0)
                {
                    searchDirection = -objective.Gradient;
                    tmpLineSearch = true;
                }
 
                if (useLineSearch || tmpLineSearch)
                {
                    LineSearchResult result;
                    try
                    {
                        result = lineSearcher.FindConformingStep(objective, searchDirection, 1.0);
                    }
                    catch (Exception e)
                    {
                        throw new InnerOptimizationException("Line search failed.", e);
                    }
 
                    iterationsWithNontrivialLineSearch += result.Iterations > 0 ? 1 : 0;
                    totalLineSearchSteps += result.Iterations;
                    objective = result.FunctionInfoAtMinimum;
                }
                else
                {
                    objective.EvaluateAt(objective.Point + searchDirection);
                }
 
                ValidateGradient(objective);
 
                tmpLineSearch = false;
                iterations += 1;
            }
 
            if (iterations == maxIterations)
            {
                throw new MaximumIterationsException(FormattableString.Invariant($"Maximum iterations ({maxIterations}) reached."));
            }
 
            return new MinimizationWithLineSearchResult(objective, iterations, ExitCondition.AbsoluteGradient, totalLineSearchSteps, iterationsWithNontrivialLineSearch);
        }
 
        static void ValidateGradient(IObjectiveFunctionEvaluation eval)
        {
            foreach (var x in eval.Gradient)
            {
                if (Double.IsNaN(x) || Double.IsInfinity(x))
                {
                    throw new EvaluationException("Non-finite gradient returned.", eval);
                }
            }
        }
 
        static void ValidateHessian(IObjectiveFunctionEvaluation eval)
        {
            for (int ii = 0; ii < eval.Hessian.RowCount; ++ii)
            {
                for (int jj = 0; jj < eval.Hessian.ColumnCount; ++jj)
                {
                    if (Double.IsNaN(eval.Hessian[ii, jj]) || Double.IsInfinity(eval.Hessian[ii, jj]))
                    {
                        throw new EvaluationException("Non-finite Hessian returned.", eval);
                    }
                }
            }
        }
    }
}