// <copyright file="DescriptiveStatistics.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2015 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using System.Runtime.Serialization;
|
|
namespace IStation.Numerics.Statistics
|
{
|
/// <summary>
|
/// Computes the basic statistics of data set. The class meets the
|
/// NIST standard of accuracy for mean, variance, and standard deviation
|
/// (the only statistics they provide exact values for) and exceeds them
|
/// in increased accuracy mode.
|
/// Recommendation: consider to use RunningStatistics instead.
|
/// </summary>
|
/// <remarks>
|
/// This type declares a DataContract for out of the box ephemeral serialization
|
/// with engines like DataContractSerializer, Protocol Buffers and FsPickler,
|
/// but does not guarantee any compatibility between versions.
|
/// It is not recommended to rely on this mechanism for durable persistence.
|
/// </remarks>
|
[DataContract(Namespace = "urn:IStation/Numerics")]
|
public class DescriptiveStatistics
|
{
|
/// <summary>
|
/// Initializes a new instance of the <see cref="DescriptiveStatistics"/> class.
|
/// </summary>
|
/// <param name="data">The sample data.</param>
|
/// <param name="increasedAccuracy">
|
/// If set to <c>true</c>, increased accuracy mode used.
|
/// Increased accuracy mode uses <see cref="decimal"/> types for internal calculations.
|
/// </param>
|
/// <remarks>
|
/// Don't use increased accuracy for data sets containing large values (in absolute value).
|
/// This may cause the calculations to overflow.
|
/// </remarks>
|
public DescriptiveStatistics(IEnumerable<double> data, bool increasedAccuracy = false)
|
{
|
if (data == null)
|
{
|
throw new ArgumentNullException(nameof(data));
|
}
|
|
if (increasedAccuracy)
|
{
|
ComputeDecimal(data);
|
}
|
else
|
{
|
Compute(data);
|
}
|
}
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="DescriptiveStatistics"/> class.
|
/// </summary>
|
/// <param name="data">The sample data.</param>
|
/// <param name="increasedAccuracy">
|
/// If set to <c>true</c>, increased accuracy mode used.
|
/// Increased accuracy mode uses <see cref="decimal"/> types for internal calculations.
|
/// </param>
|
/// <remarks>
|
/// Don't use increased accuracy for data sets containing large values (in absolute value).
|
/// This may cause the calculations to overflow.
|
/// </remarks>
|
public DescriptiveStatistics(IEnumerable<double?> data, bool increasedAccuracy = false)
|
{
|
if (data == null)
|
{
|
throw new ArgumentNullException(nameof(data));
|
}
|
|
if (increasedAccuracy)
|
{
|
ComputeDecimal(data);
|
}
|
else
|
{
|
Compute(data);
|
}
|
}
|
|
/// <summary>
|
/// Gets the size of the sample.
|
/// </summary>
|
/// <value>The size of the sample.</value>
|
[DataMember(Order = 1)]
|
public long Count { get; private set; }
|
|
/// <summary>
|
/// Gets the sample mean.
|
/// </summary>
|
/// <value>The sample mean.</value>
|
[DataMember(Order = 2)]
|
public double Mean { get; private set; }
|
|
/// <summary>
|
/// Gets the unbiased population variance estimator (on a dataset of size N will use an N-1 normalizer).
|
/// </summary>
|
/// <value>The sample variance.</value>
|
[DataMember(Order = 3)]
|
public double Variance { get; private set; }
|
|
/// <summary>
|
/// Gets the unbiased population standard deviation (on a dataset of size N will use an N-1 normalizer).
|
/// </summary>
|
/// <value>The sample standard deviation.</value>
|
[DataMember(Order = 4)]
|
public double StandardDeviation { get; private set; }
|
|
/// <summary>
|
/// Gets the sample skewness.
|
/// </summary>
|
/// <value>The sample skewness.</value>
|
/// <remarks>Returns zero if <see cref="Count"/> is less than three. </remarks>
|
[DataMember(Order = 5)]
|
public double Skewness { get; private set; }
|
|
/// <summary>
|
/// Gets the sample kurtosis.
|
/// </summary>
|
/// <value>The sample kurtosis.</value>
|
/// <remarks>Returns zero if <see cref="Count"/> is less than four. </remarks>
|
[DataMember(Order = 6)]
|
public double Kurtosis { get; private set; }
|
|
/// <summary>
|
/// Gets the maximum sample value.
|
/// </summary>
|
/// <value>The maximum sample value.</value>
|
[DataMember(Order = 7)]
|
public double Maximum { get; private set; }
|
|
/// <summary>
|
/// Gets the minimum sample value.
|
/// </summary>
|
/// <value>The minimum sample value.</value>
|
[DataMember(Order = 8)]
|
public double Minimum { get; private set; }
|
|
/// <summary>
|
/// Computes descriptive statistics from a stream of data values.
|
/// </summary>
|
/// <param name="data">A sequence of datapoints.</param>
|
void Compute(IEnumerable<double> data)
|
{
|
double mean = 0;
|
double variance = 0;
|
double skewness = 0;
|
double kurtosis = 0;
|
double minimum = double.PositiveInfinity;
|
double maximum = double.NegativeInfinity;
|
long n = 0;
|
|
foreach (var xi in data)
|
{
|
double delta = xi - mean;
|
double scaleDelta = delta/++n;
|
double scaleDeltaSqr = scaleDelta*scaleDelta;
|
double tmpDelta = delta*(n - 1);
|
|
mean += scaleDelta;
|
|
kurtosis += tmpDelta*scaleDelta*scaleDeltaSqr*(n*n - 3*n + 3)
|
+ 6*scaleDeltaSqr*variance - 4*scaleDelta*skewness;
|
|
skewness += tmpDelta*scaleDeltaSqr*(n - 2) - 3*scaleDelta*variance;
|
variance += tmpDelta*scaleDelta;
|
|
if (minimum > xi)
|
{
|
minimum = xi;
|
}
|
|
if (maximum < xi)
|
{
|
maximum = xi;
|
}
|
}
|
|
SetStatistics(mean, variance, skewness, kurtosis, minimum, maximum, n);
|
}
|
|
/// <summary>
|
/// Computes descriptive statistics from a stream of nullable data values.
|
/// </summary>
|
/// <param name="data">A sequence of datapoints.</param>
|
void Compute(IEnumerable<double?> data)
|
{
|
double mean = 0;
|
double variance = 0;
|
double skewness = 0;
|
double kurtosis = 0;
|
double minimum = double.PositiveInfinity;
|
double maximum = double.NegativeInfinity;
|
long n = 0;
|
|
foreach (var xi in data)
|
{
|
if (xi.HasValue)
|
{
|
double delta = xi.Value - mean;
|
double scaleDelta = delta/++n;
|
double scaleDeltaSqr = scaleDelta*scaleDelta;
|
double tmpDelta = delta*(n - 1);
|
|
mean += scaleDelta;
|
|
kurtosis += tmpDelta*scaleDelta*scaleDeltaSqr*(n*n - 3*n + 3)
|
+ 6*scaleDeltaSqr*variance - 4*scaleDelta*skewness;
|
|
skewness += tmpDelta*scaleDeltaSqr*(n - 2) - 3*scaleDelta*variance;
|
variance += tmpDelta*scaleDelta;
|
|
if (minimum > xi)
|
{
|
minimum = xi.Value;
|
}
|
|
if (maximum < xi)
|
{
|
maximum = xi.Value;
|
}
|
}
|
}
|
|
SetStatistics(mean, variance, skewness, kurtosis, minimum, maximum, n);
|
}
|
|
/// <summary>
|
/// Computes descriptive statistics from a stream of data values.
|
/// </summary>
|
/// <param name="data">A sequence of datapoints.</param>
|
void ComputeDecimal(IEnumerable<double> data)
|
{
|
decimal mean = 0;
|
decimal variance = 0;
|
decimal skewness = 0;
|
decimal kurtosis = 0;
|
decimal minimum = decimal.MaxValue;
|
decimal maximum = decimal.MinValue;
|
long n = 0;
|
|
foreach (double x in data)
|
{
|
decimal xi = (decimal)x;
|
decimal delta = xi - mean;
|
decimal scaleDelta = delta/++n;
|
decimal scaleDelta2 = scaleDelta*scaleDelta;
|
decimal tmpDelta = delta*(n - 1);
|
|
mean += scaleDelta;
|
|
kurtosis += tmpDelta*scaleDelta*scaleDelta2*(n*n - 3*n + 3)
|
+ 6*scaleDelta2*variance - 4*scaleDelta*skewness;
|
|
skewness += tmpDelta*scaleDelta2*(n - 2) - 3*scaleDelta*variance;
|
variance += tmpDelta*scaleDelta;
|
|
if (minimum > xi)
|
{
|
minimum = xi;
|
}
|
|
if (maximum < xi)
|
{
|
maximum = xi;
|
}
|
}
|
|
SetStatistics((double)mean, (double)variance, (double)skewness, (double)kurtosis, (double)minimum, (double)maximum, n);
|
}
|
|
/// <summary>
|
/// Computes descriptive statistics from a stream of nullable data values.
|
/// </summary>
|
/// <param name="data">A sequence of datapoints.</param>
|
void ComputeDecimal(IEnumerable<double?> data)
|
{
|
decimal mean = 0;
|
decimal variance = 0;
|
decimal skewness = 0;
|
decimal kurtosis = 0;
|
decimal minimum = decimal.MaxValue;
|
decimal maximum = decimal.MinValue;
|
long n = 0;
|
|
foreach (double? x in data)
|
{
|
if (x.HasValue)
|
{
|
decimal xi = (decimal)x.Value;
|
decimal delta = xi - mean;
|
decimal scaleDelta = delta/++n;
|
decimal scaleDeltaSQR = scaleDelta*scaleDelta;
|
decimal tmpDelta = delta*(n - 1);
|
|
mean += scaleDelta;
|
|
kurtosis += tmpDelta*scaleDelta*scaleDeltaSQR*(n*n - 3*n + 3)
|
+ 6*scaleDeltaSQR*variance - 4*scaleDelta*skewness;
|
|
skewness += tmpDelta*scaleDeltaSQR*(n - 2) - 3*scaleDelta*variance;
|
variance += tmpDelta*scaleDelta;
|
|
if (minimum > xi)
|
{
|
minimum = xi;
|
}
|
|
if (maximum < xi)
|
{
|
maximum = xi;
|
}
|
}
|
}
|
|
SetStatistics((double)mean, (double)variance, (double)skewness, (double)kurtosis, (double)minimum, (double)maximum, n);
|
}
|
|
/// <summary>
|
/// Internal use. Method use for setting the statistics.
|
/// </summary>
|
/// <param name="mean">For setting Mean.</param>
|
/// <param name="variance">For setting Variance.</param>
|
/// <param name="skewness">For setting Skewness.</param>
|
/// <param name="kurtosis">For setting Kurtosis.</param>
|
/// <param name="minimum">For setting Minimum.</param>
|
/// <param name="maximum">For setting Maximum.</param>
|
/// <param name="n">For setting Count.</param>
|
void SetStatistics(double mean, double variance, double skewness, double kurtosis, double minimum, double maximum, long n)
|
{
|
Mean = mean;
|
Count = n;
|
|
Minimum = double.NaN;
|
Maximum = double.NaN;
|
Variance = double.NaN;
|
StandardDeviation = double.NaN;
|
Skewness = double.NaN;
|
Kurtosis = double.NaN;
|
|
if (n > 0)
|
{
|
Minimum = minimum;
|
Maximum = maximum;
|
|
if (n > 1)
|
{
|
Variance = variance/(n - 1);
|
StandardDeviation = Math.Sqrt(Variance);
|
}
|
|
if (Variance != 0)
|
{
|
if (n > 2)
|
{
|
Skewness = (double)n/((n - 1)*(n - 2))*(skewness/(Variance*StandardDeviation));
|
}
|
|
if (n > 3)
|
{
|
Kurtosis = ((double)n*n - 1)/((n - 2)*(n - 3))
|
*(n*kurtosis/(variance*variance) - 3 + 6.0/(n + 1));
|
}
|
}
|
}
|
}
|
}
|
}
|