// <copyright file="UnivariateSliceSampler.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2010 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
|
namespace IStation.Numerics.Statistics.Mcmc
|
{
|
/// <summary>
|
/// Slice sampling produces samples from distribution P by uniformly sampling from under the pdf of P using
|
/// a technique described in "Slice Sampling", R. Neal, 2003. All densities are required to be in log space.
|
///
|
/// The slice sampler is a stateful sampler. It keeps track of where it currently is in the domain
|
/// of the distribution P.
|
/// </summary>
|
public class UnivariateSliceSampler : McmcSampler<double>
|
{
|
/// <summary>
|
/// Evaluates the log density function of the target distribution.
|
/// </summary>
|
private readonly DensityLn<double> _pdfLnP;
|
|
/// <summary>
|
/// The current location of the sampler.
|
/// </summary>
|
private double _current;
|
|
/// <summary>
|
/// The log density at the current location.
|
/// </summary>
|
private double _currentDensityLn;
|
|
/// <summary>
|
/// The number of burn iterations between two samples.
|
/// </summary>
|
private int _burnInterval;
|
|
/// <summary>
|
/// The scale of the slice sampler.
|
/// </summary>
|
private double _scale;
|
|
/// <summary>
|
/// Constructs a new Slice sampler using the default <see cref="System.Random"/> random
|
/// number generator. The burn interval will be set to 0.
|
/// </summary>
|
/// <param name="x0">The initial sample.</param>
|
/// <param name="pdfLnP">The density of the distribution we want to sample from.</param>
|
/// <param name="scale">The scale factor of the slice sampler.</param>
|
/// <exception cref="ArgumentOutOfRangeException">When the scale of the slice sampler is not positive.</exception>
|
public UnivariateSliceSampler(double x0, DensityLn<double> pdfLnP, double scale)
|
: this(x0, pdfLnP, 0, scale)
|
{
|
}
|
|
/// <summary>
|
/// Constructs a new slice sampler using the default <see cref="System.Random"/> random number generator. It
|
/// will set the number of burnInterval iterations and run a burnInterval phase.
|
/// </summary>
|
/// <param name="x0">The initial sample.</param>
|
/// <param name="pdfLnP">The density of the distribution we want to sample from.</param>
|
/// <param name="burnInterval">The number of iterations in between returning samples.</param>
|
/// <param name="scale">The scale factor of the slice sampler.</param>
|
/// <exception cref="ArgumentOutOfRangeException">When the number of burnInterval iteration is negative.</exception>
|
/// <exception cref="ArgumentOutOfRangeException">When the scale of the slice sampler is not positive.</exception>
|
public UnivariateSliceSampler(double x0, DensityLn<double> pdfLnP, int burnInterval, double scale)
|
{
|
_current = x0;
|
_currentDensityLn = pdfLnP(x0);
|
_pdfLnP = pdfLnP;
|
Scale = scale;
|
BurnInterval = burnInterval;
|
|
Burn(BurnInterval);
|
}
|
|
/// <summary>
|
/// Gets or sets the number of iterations in between returning samples.
|
/// </summary>
|
/// <exception cref="ArgumentOutOfRangeException">When burn interval is negative.</exception>
|
public int BurnInterval
|
{
|
get => _burnInterval;
|
set
|
{
|
if (value < 0)
|
{
|
throw new ArgumentException("Value must not be negative (zero is ok).");
|
}
|
_burnInterval = value;
|
}
|
}
|
|
/// <summary>
|
/// Gets or sets the scale of the slice sampler.
|
/// </summary>
|
public double Scale
|
{
|
get => _scale;
|
set
|
{
|
if (value <= 0.0)
|
{
|
throw new ArgumentException("Value must be positive (and not zero).");
|
}
|
_scale = value;
|
}
|
}
|
|
/// <summary>
|
/// This method runs the sampler for a number of iterations without returning a sample
|
/// </summary>
|
private void Burn(int n)
|
{
|
for (int i = 0; i < n; i++)
|
{
|
// The logarithm of the slice height.
|
double lu = Math.Log(RandomSource.NextDouble()) + _currentDensityLn;
|
|
// Create a horizontal interval (x_l, x_r) enclosing x.
|
double r = RandomSource.NextDouble();
|
double xL = _current - r * Scale;
|
double xR = _current + (1.0 - r) * Scale;
|
|
// Stepping out procedure.
|
while (_pdfLnP(xL) > lu) { xL -= Scale; }
|
while (_pdfLnP(xR) > lu) { xR += Scale; }
|
|
// Shrinking: propose new x and shrink interval until good one found.
|
while (true)
|
{
|
double xnew = RandomSource.NextDouble() * (xR - xL) + xL;
|
_currentDensityLn = _pdfLnP(xnew);
|
if (_currentDensityLn > lu)
|
{
|
_current = xnew;
|
Accepts++;
|
Samples++;
|
break;
|
}
|
if (xnew > _current)
|
{
|
xR = xnew;
|
}
|
else
|
{
|
xL = xnew;
|
}
|
}
|
}
|
}
|
|
/// <summary>
|
/// Returns a sample from the distribution P.
|
/// </summary>
|
public override double Sample()
|
{
|
Burn(BurnInterval + 1);
|
|
return _current;
|
}
|
}
|
}
|