// <copyright file="Stability.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2010 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using Complex = System.Numerics.Complex;
|
|
// ReSharper disable CheckNamespace
|
namespace IStation.Numerics
|
// ReSharper restore CheckNamespace
|
{
|
public partial class SpecialFunctions
|
{
|
/// <summary>
|
/// Numerically stable exponential minus one, i.e. <code>x -> exp(x)-1</code>
|
/// </summary>
|
/// <param name="power">A number specifying a power.</param>
|
/// <returns>Returns <code>exp(power)-1</code>.</returns>
|
public static double ExponentialMinusOne(double power)
|
{
|
double x = Math.Abs(power);
|
if (x > 0.1)
|
{
|
return Math.Exp(power) - 1.0;
|
}
|
|
if (x < x.PositiveEpsilonOf())
|
{
|
return x;
|
}
|
|
// Series Expansion to x^k / k!
|
int k = 0;
|
double term = 1.0;
|
return Evaluate.Series(
|
() =>
|
{
|
k++;
|
term *= power;
|
term /= k;
|
return term;
|
});
|
}
|
|
/// <summary>
|
/// Numerically stable hypotenuse of a right angle triangle, i.e. <code>(a,b) -> sqrt(a^2 + b^2)</code>
|
/// </summary>
|
/// <param name="a">The length of side a of the triangle.</param>
|
/// <param name="b">The length of side b of the triangle.</param>
|
/// <returns>Returns <code>sqrt(a<sup>2</sup> + b<sup>2</sup>)</code> without underflow/overflow.</returns>
|
public static Complex Hypotenuse(Complex a, Complex b)
|
{
|
if (a.Magnitude > b.Magnitude)
|
{
|
var r = b.Magnitude/a.Magnitude;
|
return a.Magnitude*Math.Sqrt(1 + (r*r));
|
}
|
|
if (b != 0.0)
|
{
|
// NOTE (ruegg): not "!b.AlmostZero()" to avoid convergence issues (e.g. in SVD algorithm)
|
var r = a.Magnitude/b.Magnitude;
|
return b.Magnitude*Math.Sqrt(1 + (r*r));
|
}
|
|
return 0d;
|
}
|
|
/// <summary>
|
/// Numerically stable hypotenuse of a right angle triangle, i.e. <code>(a,b) -> sqrt(a^2 + b^2)</code>
|
/// </summary>
|
/// <param name="a">The length of side a of the triangle.</param>
|
/// <param name="b">The length of side b of the triangle.</param>
|
/// <returns>Returns <code>sqrt(a<sup>2</sup> + b<sup>2</sup>)</code> without underflow/overflow.</returns>
|
public static Complex32 Hypotenuse(Complex32 a, Complex32 b)
|
{
|
if (a.Magnitude > b.Magnitude)
|
{
|
var r = b.Magnitude/a.Magnitude;
|
return a.Magnitude*(float)Math.Sqrt(1 + (r*r));
|
}
|
|
if (b != 0.0f)
|
{
|
// NOTE (ruegg): not "!b.AlmostZero()" to avoid convergence issues (e.g. in SVD algorithm)
|
var r = a.Magnitude/b.Magnitude;
|
return b.Magnitude*(float)Math.Sqrt(1 + (r*r));
|
}
|
|
return 0f;
|
}
|
|
/// <summary>
|
/// Numerically stable hypotenuse of a right angle triangle, i.e. <code>(a,b) -> sqrt(a^2 + b^2)</code>
|
/// </summary>
|
/// <param name="a">The length of side a of the triangle.</param>
|
/// <param name="b">The length of side b of the triangle.</param>
|
/// <returns>Returns <code>sqrt(a<sup>2</sup> + b<sup>2</sup>)</code> without underflow/overflow.</returns>
|
public static double Hypotenuse(double a, double b)
|
{
|
if (Math.Abs(a) > Math.Abs(b))
|
{
|
double r = b/a;
|
return Math.Abs(a)*Math.Sqrt(1 + (r*r));
|
}
|
|
if (b != 0.0)
|
{
|
// NOTE (ruegg): not "!b.AlmostZero()" to avoid convergence issues (e.g. in SVD algorithm)
|
double r = a/b;
|
return Math.Abs(b)*Math.Sqrt(1 + (r*r));
|
}
|
|
return 0d;
|
}
|
|
/// <summary>
|
/// Numerically stable hypotenuse of a right angle triangle, i.e. <code>(a,b) -> sqrt(a^2 + b^2)</code>
|
/// </summary>
|
/// <param name="a">The length of side a of the triangle.</param>
|
/// <param name="b">The length of side b of the triangle.</param>
|
/// <returns>Returns <code>sqrt(a<sup>2</sup> + b<sup>2</sup>)</code> without underflow/overflow.</returns>
|
public static float Hypotenuse(float a, float b)
|
{
|
if (Math.Abs(a) > Math.Abs(b))
|
{
|
float r = b/a;
|
return Math.Abs(a)*(float)Math.Sqrt(1 + (r*r));
|
}
|
|
if (b != 0.0)
|
{
|
// NOTE (ruegg): not "!b.AlmostZero()" to avoid convergence issues (e.g. in SVD algorithm)
|
float r = a/b;
|
return Math.Abs(b)*(float)Math.Sqrt(1 + (r*r));
|
}
|
|
return 0f;
|
}
|
}
|
}
|