// <copyright file="NevillePolynomialInterpolation.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2014 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using System.Linq;
|
|
namespace IStation.Numerics.Interpolation
|
{
|
/// <summary>
|
/// Lagrange Polynomial Interpolation using Neville's Algorithm.
|
/// </summary>
|
/// <remarks>
|
/// <para>
|
/// This algorithm supports differentiation, but doesn't support integration.
|
/// </para>
|
/// <para>
|
/// When working with equidistant or Chebyshev sample points it is
|
/// recommended to use the barycentric algorithms specialized for
|
/// these cases instead of this arbitrary Neville algorithm.
|
/// </para>
|
/// </remarks>
|
public class NevillePolynomialInterpolation : IInterpolation
|
{
|
readonly double[] _x;
|
readonly double[] _y;
|
|
/// <param name="x">Sample Points t, sorted ascendingly.</param>
|
/// <param name="y">Sample Values x(t), sorted ascendingly by x.</param>
|
public NevillePolynomialInterpolation(double[] x, double[] y)
|
{
|
if (x.Length != y.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
if (x.Length < 1)
|
{
|
throw new ArgumentException("The given array is too small. It must be at least 1 long.", nameof(x));
|
}
|
|
for (var i = 1; i < x.Length; ++i)
|
{
|
if (x[i] == x[i - 1])
|
{
|
throw new ArgumentException("All sample points should be unique.", nameof(x));
|
}
|
}
|
|
_x = x;
|
_y = y;
|
}
|
|
/// <summary>
|
/// Create a Neville polynomial interpolation from a set of (x,y) value pairs, sorted ascendingly by x.
|
/// </summary>
|
public static NevillePolynomialInterpolation InterpolateSorted(double[] x, double[] y)
|
{
|
return new NevillePolynomialInterpolation(x, y);
|
}
|
|
/// <summary>
|
/// Create a Neville polynomial interpolation from an unsorted set of (x,y) value pairs.
|
/// WARNING: Works in-place and can thus causes the data array to be reordered.
|
/// </summary>
|
public static NevillePolynomialInterpolation InterpolateInplace(double[] x, double[] y)
|
{
|
if (x.Length != y.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
Sorting.Sort(x, y);
|
return InterpolateSorted(x, y);
|
}
|
|
/// <summary>
|
/// Create a Neville polynomial interpolation from an unsorted set of (x,y) value pairs.
|
/// </summary>
|
public static NevillePolynomialInterpolation Interpolate(IEnumerable<double> x, IEnumerable<double> y)
|
{
|
// note: we must make a copy, even if the input was arrays already
|
return InterpolateInplace(x.ToArray(), y.ToArray());
|
}
|
|
/// <summary>
|
/// Gets a value indicating whether the algorithm supports differentiation (interpolated derivative).
|
/// </summary>
|
bool IInterpolation.SupportsDifferentiation => true;
|
|
/// <summary>
|
/// Gets a value indicating whether the algorithm supports integration (interpolated quadrature).
|
/// </summary>
|
bool IInterpolation.SupportsIntegration => false;
|
|
/// <summary>
|
/// Interpolate at point t.
|
/// </summary>
|
/// <param name="t">Point t to interpolate at.</param>
|
/// <returns>Interpolated value x(t).</returns>
|
public double Interpolate(double t)
|
{
|
var x = new double[_y.Length];
|
_y.CopyTo(x, 0);
|
|
for (int level = 1; level < x.Length; level++)
|
{
|
for (int i = 0; i < x.Length - level; i++)
|
{
|
double hp = t - _x[i + level];
|
double ho = _x[i] - t;
|
double den = _x[i] - _x[i + level];
|
x[i] = ((hp*x[i]) + (ho*x[i + 1]))/den;
|
}
|
}
|
|
return x[0];
|
}
|
|
/// <summary>
|
/// Differentiate at point t.
|
/// </summary>
|
/// <param name="t">Point t to interpolate at.</param>
|
/// <returns>Interpolated first derivative at point t.</returns>
|
public double Differentiate(double t)
|
{
|
var x = new double[_y.Length];
|
var dx = new double[_y.Length];
|
_y.CopyTo(x, 0);
|
|
for (int level = 1; level < x.Length; level++)
|
{
|
for (int i = 0; i < x.Length - level; i++)
|
{
|
double hp = t - _x[i + level];
|
double ho = _x[i] - t;
|
double den = _x[i] - _x[i + level];
|
dx[i] = ((hp*dx[i]) + x[i] + (ho*dx[i + 1]) - x[i + 1])/den;
|
x[i] = ((hp*x[i]) + (ho*x[i + 1]))/den;
|
}
|
}
|
|
return dx[0];
|
}
|
|
/// <summary>
|
/// Differentiate twice at point t.
|
/// </summary>
|
/// <param name="t">Point t to interpolate at.</param>
|
/// <returns>Interpolated second derivative at point t.</returns>
|
public double Differentiate2(double t)
|
{
|
var x = new double[_y.Length];
|
var dx = new double[_y.Length];
|
var ddx = new double[_y.Length];
|
_y.CopyTo(x, 0);
|
|
for (int level = 1; level < x.Length; level++)
|
{
|
for (int i = 0; i < x.Length - level; i++)
|
{
|
double hp = t - _x[i + level];
|
double ho = _x[i] - t;
|
double den = _x[i] - _x[i + level];
|
ddx[i] = ((hp*ddx[i]) + (ho*ddx[i + 1]) + (2*dx[i]) - (2*dx[i + 1]))/den;
|
dx[i] = ((hp*dx[i]) + x[i] + (ho*dx[i + 1]) - x[i + 1])/den;
|
x[i] = ((hp*x[i]) + (ho*x[i + 1]))/den;
|
}
|
}
|
|
return ddx[0];
|
}
|
|
/// <summary>
|
/// Indefinite integral at point t. NOT SUPPORTED.
|
/// </summary>
|
/// <param name="t">Point t to integrate at.</param>
|
double IInterpolation.Integrate(double t)
|
{
|
throw new NotSupportedException();
|
}
|
|
/// <summary>
|
/// Definite integral between points a and b. NOT SUPPORTED.
|
/// </summary>
|
/// <param name="a">Left bound of the integration interval [a,b].</param>
|
/// <param name="b">Right bound of the integration interval [a,b].</param>
|
double IInterpolation.Integrate(double a, double b)
|
{
|
throw new NotSupportedException();
|
}
|
}
|
}
|