// <copyright file="Complex32.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2010 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using System.Globalization;
|
using System.Runtime.InteropServices;
|
using System.Runtime.Serialization;
|
using Complex = System.Numerics.Complex;
|
using BigInteger = System.Numerics.BigInteger;
|
|
#if !NETSTANDARD1_3
|
using System.Runtime;
|
#endif
|
|
namespace IStation.Numerics
|
{
|
/// <summary>
|
/// 32-bit single precision complex numbers class.
|
/// </summary>
|
/// <remarks>
|
/// <para>
|
/// The class <c>Complex32</c> provides all elementary operations
|
/// on complex numbers. All the operators <c>+</c>, <c>-</c>,
|
/// <c>*</c>, <c>/</c>, <c>==</c>, <c>!=</c> are defined in the
|
/// canonical way. Additional complex trigonometric functions
|
/// are also provided. Note that the <c>Complex32</c> structures
|
/// has two special constant values <see cref="Complex32.NaN"/> and
|
/// <see cref="Complex32.PositiveInfinity"/>.
|
/// </para>
|
/// <para>
|
/// <code>
|
/// Complex32 x = new Complex32(1f,2f);
|
/// Complex32 y = Complex32.FromPolarCoordinates(1f, Math.Pi);
|
/// Complex32 z = (x + y) / (x - y);
|
/// </code>
|
/// </para>
|
/// <para>
|
/// For mathematical details about complex numbers, please
|
/// have a look at the <a href="http://en.wikipedia.org/wiki/Complex_number">
|
/// Wikipedia</a>
|
/// </para>
|
/// </remarks>
|
[Serializable]
|
[StructLayout(LayoutKind.Sequential)]
|
[DataContract(Namespace = "urn:IStation/Numerics")]
|
public readonly struct Complex32 : IFormattable, IEquatable<Complex32>
|
{
|
/// <summary>
|
/// The real component of the complex number.
|
/// </summary>
|
[DataMember(Order = 1)]
|
private readonly float _real;
|
|
/// <summary>
|
/// The imaginary component of the complex number.
|
/// </summary>
|
[DataMember(Order = 2)]
|
private readonly float _imag;
|
|
/// <summary>
|
/// Initializes a new instance of the Complex32 structure with the given real
|
/// and imaginary parts.
|
/// </summary>
|
/// <param name="real">The value for the real component.</param>
|
/// <param name="imaginary">The value for the imaginary component.</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public Complex32(float real, float imaginary)
|
{
|
_real = real;
|
_imag = imaginary;
|
}
|
|
/// <summary>
|
/// Creates a complex number from a point's polar coordinates.
|
/// </summary>
|
/// <returns>A complex number.</returns>
|
/// <param name="magnitude">The magnitude, which is the distance from the origin (the intersection of the x-axis and the y-axis) to the number.</param>
|
/// <param name="phase">The phase, which is the angle from the line to the horizontal axis, measured in radians.</param>
|
public static Complex32 FromPolarCoordinates(float magnitude, float phase)
|
{
|
return new Complex32(magnitude * (float)Math.Cos(phase), magnitude * (float)Math.Sin(phase));
|
}
|
|
/// <summary>
|
/// Returns a new <see cref="T:IStation.Numerics.Complex32" /> instance
|
/// with a real number equal to zero and an imaginary number equal to zero.
|
/// </summary>
|
public static readonly Complex32 Zero = new Complex32(0.0f, 0.0f);
|
|
/// <summary>
|
/// Returns a new <see cref="T:IStation.Numerics.Complex32" /> instance
|
/// with a real number equal to one and an imaginary number equal to zero.
|
/// </summary>
|
public static readonly Complex32 One = new Complex32(1.0f, 0.0f);
|
|
/// <summary>
|
/// Returns a new <see cref="T:IStation.Numerics.Complex32" /> instance
|
/// with a real number equal to zero and an imaginary number equal to one.
|
/// </summary>
|
public static readonly Complex32 ImaginaryOne = new Complex32(0, 1);
|
|
/// <summary>
|
/// Returns a new <see cref="T:IStation.Numerics.Complex32" /> instance
|
/// with real and imaginary numbers positive infinite.
|
/// </summary>
|
public static readonly Complex32 PositiveInfinity = new Complex32(float.PositiveInfinity, float.PositiveInfinity);
|
|
/// <summary>
|
/// Returns a new <see cref="T:IStation.Numerics.Complex32" /> instance
|
/// with real and imaginary numbers not a number.
|
/// </summary>
|
public static readonly Complex32 NaN = new Complex32(float.NaN, float.NaN);
|
|
/// <summary>
|
/// Gets the real component of the complex number.
|
/// </summary>
|
/// <value>The real component of the complex number.</value>
|
public float Real
|
{
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
get => _real;
|
}
|
|
/// <summary>
|
/// Gets the real imaginary component of the complex number.
|
/// </summary>
|
/// <value>The real imaginary component of the complex number.</value>
|
public float Imaginary
|
{
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
get => _imag;
|
}
|
|
/// <summary>
|
/// Gets the phase or argument of this <c>Complex32</c>.
|
/// </summary>
|
/// <remarks>
|
/// Phase always returns a value bigger than negative Pi and
|
/// smaller or equal to Pi. If this <c>Complex32</c> is zero, the Complex32
|
/// is assumed to be positive real with an argument of zero.
|
/// </remarks>
|
/// <returns>The phase or argument of this <c>Complex32</c></returns>
|
public float Phase
|
{
|
// NOTE: the special case for negative real numbers fixes negative-zero value behavior. Do not remove.
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
get => _imag == 0f && _real < 0f ? (float)Constants.Pi : (float)Math.Atan2(_imag, _real);
|
}
|
|
/// <summary>
|
/// Gets the magnitude (or absolute value) of a complex number.
|
/// </summary>
|
/// <remarks>Assuming that magnitude of (inf,a) and (a,inf) and (inf,inf) is inf and (NaN,a), (a,NaN) and (NaN,NaN) is NaN</remarks>
|
/// <returns>The magnitude of the current instance.</returns>
|
public float Magnitude
|
{
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
get
|
{
|
if (float.IsNaN(_real) || float.IsNaN(_imag))
|
return float.NaN;
|
if (float.IsInfinity(_real) || float.IsInfinity(_imag))
|
return float.PositiveInfinity;
|
float a = Math.Abs(_real);
|
float b = Math.Abs(_imag);
|
if (a > b)
|
{
|
double tmp = b / a;
|
return a * (float)Math.Sqrt(1.0f + tmp * tmp);
|
|
}
|
if (a == 0.0f) // one can write a >= float.Epsilon here
|
{
|
return b;
|
}
|
else
|
{
|
double tmp = a / b;
|
return b * (float)Math.Sqrt(1.0f + tmp * tmp);
|
}
|
}
|
}
|
|
/// <summary>
|
/// Gets the squared magnitude (or squared absolute value) of a complex number.
|
/// </summary>
|
/// <returns>The squared magnitude of the current instance.</returns>
|
public float MagnitudeSquared => _real * _real + _imag * _imag;
|
|
/// <summary>
|
/// Gets the unity of this complex (same argument, but on the unit circle; exp(I*arg))
|
/// </summary>
|
/// <returns>The unity of this <c>Complex32</c>.</returns>
|
public Complex32 Sign
|
{
|
get
|
{
|
if (float.IsPositiveInfinity(_real) && float.IsPositiveInfinity(_imag))
|
{
|
return new Complex32((float)Constants.Sqrt1Over2, (float)Constants.Sqrt1Over2);
|
}
|
|
if (float.IsPositiveInfinity(_real) && float.IsNegativeInfinity(_imag))
|
{
|
return new Complex32((float)Constants.Sqrt1Over2, -(float)Constants.Sqrt1Over2);
|
}
|
|
if (float.IsNegativeInfinity(_real) && float.IsPositiveInfinity(_imag))
|
{
|
return new Complex32(-(float)Constants.Sqrt1Over2, -(float)Constants.Sqrt1Over2);
|
}
|
|
if (float.IsNegativeInfinity(_real) && float.IsNegativeInfinity(_imag))
|
{
|
return new Complex32(-(float)Constants.Sqrt1Over2, (float)Constants.Sqrt1Over2);
|
}
|
|
// don't replace this with "Magnitude"!
|
var mod = SpecialFunctions.Hypotenuse(_real, _imag);
|
if (mod == 0.0f)
|
{
|
return Zero;
|
}
|
|
return new Complex32(_real / mod, _imag / mod);
|
}
|
}
|
|
/// <summary>
|
/// Gets a value indicating whether the <c>Complex32</c> is zero.
|
/// </summary>
|
/// <returns><c>true</c> if this instance is zero; otherwise, <c>false</c>.</returns>
|
public bool IsZero()
|
{
|
return _real == 0.0f && _imag == 0.0f;
|
}
|
|
/// <summary>
|
/// Gets a value indicating whether the <c>Complex32</c> is one.
|
/// </summary>
|
/// <returns><c>true</c> if this instance is one; otherwise, <c>false</c>.</returns>
|
public bool IsOne()
|
{
|
return _real == 1.0f && _imag == 0.0f;
|
}
|
|
/// <summary>
|
/// Gets a value indicating whether the <c>Complex32</c> is the imaginary unit.
|
/// </summary>
|
/// <returns><c>true</c> if this instance is ImaginaryOne; otherwise, <c>false</c>.</returns>
|
public bool IsImaginaryOne()
|
{
|
return _real == 0.0f && _imag == 1.0f;
|
}
|
|
/// <summary>
|
/// Gets a value indicating whether the provided <c>Complex32</c>evaluates
|
/// to a value that is not a number.
|
/// </summary>
|
/// <returns>
|
/// <c>true</c> if this instance is <see cref="NaN"/>; otherwise,
|
/// <c>false</c>.
|
/// </returns>
|
public bool IsNaN()
|
{
|
return float.IsNaN(_real) || float.IsNaN(_imag);
|
}
|
|
/// <summary>
|
/// Gets a value indicating whether the provided <c>Complex32</c> evaluates to an
|
/// infinite value.
|
/// </summary>
|
/// <returns>
|
/// <c>true</c> if this instance is infinite; otherwise, <c>false</c>.
|
/// </returns>
|
/// <remarks>
|
/// True if it either evaluates to a complex infinity
|
/// or to a directed infinity.
|
/// </remarks>
|
public bool IsInfinity()
|
{
|
return float.IsInfinity(_real) || float.IsInfinity(_imag);
|
}
|
|
/// <summary>
|
/// Gets a value indicating whether the provided <c>Complex32</c> is real.
|
/// </summary>
|
/// <returns><c>true</c> if this instance is a real number; otherwise, <c>false</c>.</returns>
|
public bool IsReal()
|
{
|
return _imag == 0.0f;
|
}
|
|
/// <summary>
|
/// Gets a value indicating whether the provided <c>Complex32</c> is real and not negative, that is >= 0.
|
/// </summary>
|
/// <returns>
|
/// <c>true</c> if this instance is real nonnegative number; otherwise, <c>false</c>.
|
/// </returns>
|
public bool IsRealNonNegative()
|
{
|
return _imag == 0.0f && _real >= 0;
|
}
|
|
/// <summary>
|
/// Exponential of this <c>Complex32</c> (exp(x), E^x).
|
/// </summary>
|
/// <returns>
|
/// The exponential of this complex number.
|
/// </returns>
|
public Complex32 Exponential()
|
{
|
var exp = (float)Math.Exp(_real);
|
if (IsReal())
|
{
|
return new Complex32(exp, 0.0f);
|
}
|
|
return new Complex32(exp * (float)Math.Cos(_imag), exp * (float)Math.Sin(_imag));
|
}
|
|
/// <summary>
|
/// Natural Logarithm of this <c>Complex32</c> (Base E).
|
/// </summary>
|
/// <returns>The natural logarithm of this complex number.</returns>
|
public Complex32 NaturalLogarithm()
|
{
|
if (IsRealNonNegative())
|
{
|
return new Complex32((float)Math.Log(_real), 0.0f);
|
}
|
|
return new Complex32(0.5f * (float)Math.Log(MagnitudeSquared), Phase);
|
}
|
|
/// <summary>
|
/// Common Logarithm of this <c>Complex32</c> (Base 10).
|
/// </summary>
|
/// <returns>The common logarithm of this complex number.</returns>
|
public Complex32 CommonLogarithm()
|
{
|
return NaturalLogarithm() / (float)Constants.Ln10;
|
}
|
|
/// <summary>
|
/// Logarithm of this <c>Complex32</c> with custom base.
|
/// </summary>
|
/// <returns>The logarithm of this complex number.</returns>
|
public Complex32 Logarithm(float baseValue)
|
{
|
return NaturalLogarithm() / (float)Math.Log(baseValue);
|
}
|
|
/// <summary>
|
/// Raise this <c>Complex32</c> to the given value.
|
/// </summary>
|
/// <param name="exponent">
|
/// The exponent.
|
/// </param>
|
/// <returns>
|
/// The complex number raised to the given exponent.
|
/// </returns>
|
public Complex32 Power(Complex32 exponent)
|
{
|
if (IsZero())
|
{
|
if (exponent.IsZero())
|
{
|
return One;
|
}
|
|
if (exponent.Real > 0f)
|
{
|
return Zero;
|
}
|
|
if (exponent.Real < 0f)
|
{
|
return exponent.Imaginary == 0f
|
? new Complex32(float.PositiveInfinity, 0f)
|
: new Complex32(float.PositiveInfinity, float.PositiveInfinity);
|
}
|
|
return NaN;
|
}
|
|
return (exponent * NaturalLogarithm()).Exponential();
|
}
|
|
/// <summary>
|
/// Raise this <c>Complex32</c> to the inverse of the given value.
|
/// </summary>
|
/// <param name="rootExponent">
|
/// The root exponent.
|
/// </param>
|
/// <returns>
|
/// The complex raised to the inverse of the given exponent.
|
/// </returns>
|
public Complex32 Root(Complex32 rootExponent)
|
{
|
return Power(1 / rootExponent);
|
}
|
|
/// <summary>
|
/// The Square (power 2) of this <c>Complex32</c>
|
/// </summary>
|
/// <returns>
|
/// The square of this complex number.
|
/// </returns>
|
public Complex32 Square()
|
{
|
if (IsReal())
|
{
|
return new Complex32(_real * _real, 0.0f);
|
}
|
|
return new Complex32((_real * _real) - (_imag * _imag), 2 * _real * _imag);
|
}
|
|
/// <summary>
|
/// The Square Root (power 1/2) of this <c>Complex32</c>
|
/// </summary>
|
/// <returns>
|
/// The square root of this complex number.
|
/// </returns>
|
public Complex32 SquareRoot()
|
{
|
if (IsRealNonNegative())
|
{
|
return new Complex32((float)Math.Sqrt(_real), 0.0f);
|
}
|
|
Complex32 result;
|
|
var absReal = Math.Abs(Real);
|
var absImag = Math.Abs(Imaginary);
|
double w;
|
if (absReal >= absImag)
|
{
|
var ratio = Imaginary / Real;
|
w = Math.Sqrt(absReal) * Math.Sqrt(0.5 * (1.0f + Math.Sqrt(1.0f + (ratio * ratio))));
|
}
|
else
|
{
|
var ratio = Real / Imaginary;
|
w = Math.Sqrt(absImag) * Math.Sqrt(0.5 * (Math.Abs(ratio) + Math.Sqrt(1.0f + (ratio * ratio))));
|
}
|
|
if (Real >= 0.0f)
|
{
|
result = new Complex32((float)w, (float)(Imaginary / (2.0f * w)));
|
}
|
else if (Imaginary >= 0.0f)
|
{
|
result = new Complex32((float)(absImag / (2.0 * w)), (float)w);
|
}
|
else
|
{
|
result = new Complex32((float)(absImag / (2.0 * w)), (float)-w);
|
}
|
|
return result;
|
}
|
|
/// <summary>
|
/// Evaluate all square roots of this <c>Complex32</c>.
|
/// </summary>
|
public Tuple<Complex32, Complex32> SquareRoots()
|
{
|
var principal = SquareRoot();
|
return new Tuple<Complex32, Complex32>(principal, -principal);
|
}
|
|
/// <summary>
|
/// Evaluate all cubic roots of this <c>Complex32</c>.
|
/// </summary>
|
public Tuple<Complex32, Complex32, Complex32> CubicRoots()
|
{
|
float r = (float)Math.Pow(Magnitude, 1d / 3d);
|
float theta = Phase / 3;
|
const float shift = (float)Constants.Pi2 / 3;
|
return new Tuple<Complex32, Complex32, Complex32>(
|
FromPolarCoordinates(r, theta),
|
FromPolarCoordinates(r, theta + shift),
|
FromPolarCoordinates(r, theta - shift));
|
}
|
|
/// <summary>
|
/// Equality test.
|
/// </summary>
|
/// <param name="complex1">One of complex numbers to compare.</param>
|
/// <param name="complex2">The other complex numbers to compare.</param>
|
/// <returns><c>true</c> if the real and imaginary components of the two complex numbers are equal; <c>false</c> otherwise.</returns>
|
public static bool operator ==(Complex32 complex1, Complex32 complex2)
|
{
|
return complex1.Equals(complex2);
|
}
|
|
/// <summary>
|
/// Inequality test.
|
/// </summary>
|
/// <param name="complex1">One of complex numbers to compare.</param>
|
/// <param name="complex2">The other complex numbers to compare.</param>
|
/// <returns><c>true</c> if the real or imaginary components of the two complex numbers are not equal; <c>false</c> otherwise.</returns>
|
public static bool operator !=(Complex32 complex1, Complex32 complex2)
|
{
|
return !complex1.Equals(complex2);
|
}
|
|
/// <summary>
|
/// Unary addition.
|
/// </summary>
|
/// <param name="summand">The complex number to operate on.</param>
|
/// <returns>Returns the same complex number.</returns>
|
public static Complex32 operator +(Complex32 summand)
|
{
|
return summand;
|
}
|
|
/// <summary>
|
/// Unary minus.
|
/// </summary>
|
/// <param name="subtrahend">The complex number to operate on.</param>
|
/// <returns>The negated value of the <paramref name="subtrahend"/>.</returns>
|
public static Complex32 operator -(Complex32 subtrahend)
|
{
|
return new Complex32(-subtrahend._real, -subtrahend._imag);
|
}
|
|
/// <summary>Addition operator. Adds two complex numbers together.</summary>
|
/// <returns>The result of the addition.</returns>
|
/// <param name="summand1">One of the complex numbers to add.</param>
|
/// <param name="summand2">The other complex numbers to add.</param>
|
public static Complex32 operator +(Complex32 summand1, Complex32 summand2)
|
{
|
return new Complex32(summand1._real + summand2._real, summand1._imag + summand2._imag);
|
}
|
|
/// <summary>Subtraction operator. Subtracts two complex numbers.</summary>
|
/// <returns>The result of the subtraction.</returns>
|
/// <param name="minuend">The complex number to subtract from.</param>
|
/// <param name="subtrahend">The complex number to subtract.</param>
|
public static Complex32 operator -(Complex32 minuend, Complex32 subtrahend)
|
{
|
return new Complex32(minuend._real - subtrahend._real, minuend._imag - subtrahend._imag);
|
}
|
|
/// <summary>Addition operator. Adds a complex number and float together.</summary>
|
/// <returns>The result of the addition.</returns>
|
/// <param name="summand1">The complex numbers to add.</param>
|
/// <param name="summand2">The float value to add.</param>
|
public static Complex32 operator +(Complex32 summand1, float summand2)
|
{
|
return new Complex32(summand1._real + summand2, summand1._imag);
|
}
|
|
/// <summary>Subtraction operator. Subtracts float value from a complex value.</summary>
|
/// <returns>The result of the subtraction.</returns>
|
/// <param name="minuend">The complex number to subtract from.</param>
|
/// <param name="subtrahend">The float value to subtract.</param>
|
public static Complex32 operator -(Complex32 minuend, float subtrahend)
|
{
|
return new Complex32(minuend._real - subtrahend, minuend._imag);
|
}
|
|
/// <summary>Addition operator. Adds a complex number and float together.</summary>
|
/// <returns>The result of the addition.</returns>
|
/// <param name="summand1">The float value to add.</param>
|
/// <param name="summand2">The complex numbers to add.</param>
|
public static Complex32 operator +(float summand1, Complex32 summand2)
|
{
|
return new Complex32(summand2._real + summand1, summand2._imag);
|
}
|
|
/// <summary>Subtraction operator. Subtracts complex value from a float value.</summary>
|
/// <returns>The result of the subtraction.</returns>
|
/// <param name="minuend">The float vale to subtract from.</param>
|
/// <param name="subtrahend">The complex value to subtract.</param>
|
public static Complex32 operator -(float minuend, Complex32 subtrahend)
|
{
|
return new Complex32(minuend - subtrahend._real, -subtrahend._imag);
|
}
|
|
/// <summary>Multiplication operator. Multiplies two complex numbers.</summary>
|
/// <returns>The result of the multiplication.</returns>
|
/// <param name="multiplicand">One of the complex numbers to multiply.</param>
|
/// <param name="multiplier">The other complex number to multiply.</param>
|
public static Complex32 operator *(Complex32 multiplicand, Complex32 multiplier)
|
{
|
return new Complex32(
|
(multiplicand._real * multiplier._real) - (multiplicand._imag * multiplier._imag),
|
(multiplicand._real * multiplier._imag) + (multiplicand._imag * multiplier._real));
|
}
|
|
/// <summary>Multiplication operator. Multiplies a complex number with a float value.</summary>
|
/// <returns>The result of the multiplication.</returns>
|
/// <param name="multiplicand">The float value to multiply.</param>
|
/// <param name="multiplier">The complex number to multiply.</param>
|
public static Complex32 operator *(float multiplicand, Complex32 multiplier)
|
{
|
return new Complex32(multiplier._real * multiplicand, multiplier._imag * multiplicand);
|
}
|
|
/// <summary>Multiplication operator. Multiplies a complex number with a float value.</summary>
|
/// <returns>The result of the multiplication.</returns>
|
/// <param name="multiplicand">The complex number to multiply.</param>
|
/// <param name="multiplier">The float value to multiply.</param>
|
public static Complex32 operator *(Complex32 multiplicand, float multiplier)
|
{
|
return new Complex32(multiplicand._real * multiplier, multiplicand._imag * multiplier);
|
}
|
|
/// <summary>Division operator. Divides a complex number by another.</summary>
|
/// <remarks>Enhanced Smith's algorithm for dividing two complex numbers </remarks>
|
/// <see cref="InternalDiv(float, float, float, float, bool)"/>
|
/// <returns>The result of the division.</returns>
|
/// <param name="dividend">The dividend.</param>
|
/// <param name="divisor">The divisor.</param>
|
public static Complex32 operator /(Complex32 dividend, Complex32 divisor)
|
{
|
if (dividend.IsZero() && divisor.IsZero())
|
{
|
return NaN;
|
}
|
|
if (divisor.IsZero())
|
{
|
return PositiveInfinity;
|
}
|
float a = dividend.Real;
|
float b = dividend.Imaginary;
|
float c = divisor.Real;
|
float d = divisor.Imaginary;
|
if (Math.Abs(d) <= Math.Abs(c))
|
return InternalDiv(a, b, c, d, false);
|
return InternalDiv(b, a, d, c, true);
|
}
|
/// <summary>
|
/// Helper method for dividing.
|
/// </summary>
|
/// <param name="a">Re first</param>
|
/// <param name="b">Im first</param>
|
/// <param name="c">Re second</param>
|
/// <param name="d">Im second</param>
|
/// <param name="swapped"></param>
|
/// <returns></returns>
|
private static Complex32 InternalDiv(float a, float b, float c, float d, bool swapped)
|
{
|
float r = d / c;
|
float t = 1 / (c + d * r);
|
float e, f;
|
if (r != 0.0f) // one can use r >= float.Epsilon || r <= float.Epsilon instead
|
{
|
e = (a + b * r) * t;
|
f = (b - a * r) * t;
|
}
|
else
|
{
|
e = (a + d * (b / c)) * t;
|
f = (b - d * (a / c)) * t;
|
}
|
if (swapped)
|
f = -f;
|
return new Complex32(e, f);
|
}
|
|
/// <summary>Division operator. Divides a float value by a complex number.</summary>
|
/// <remarks>Algorithm based on Smith's algorithm</remarks>
|
/// <see cref="InternalDiv(float, float, float, float, bool)"/>
|
/// <returns>The result of the division.</returns>
|
/// <param name="dividend">The dividend.</param>
|
/// <param name="divisor">The divisor.</param>
|
public static Complex32 operator /(float dividend, Complex32 divisor)
|
{
|
if (dividend == 0.0f && divisor.IsZero())
|
{
|
return NaN;
|
}
|
|
if (divisor.IsZero())
|
{
|
return PositiveInfinity;
|
}
|
float c = divisor.Real;
|
float d = divisor.Imaginary;
|
if (Math.Abs(d) <= Math.Abs(c))
|
return InternalDiv(dividend, 0, c, d, false);
|
return InternalDiv(0, dividend, d, c, true);
|
}
|
|
/// <summary>Division operator. Divides a complex number by a float value.</summary>
|
/// <returns>The result of the division.</returns>
|
/// <param name="dividend">The dividend.</param>
|
/// <param name="divisor">The divisor.</param>
|
public static Complex32 operator /(Complex32 dividend, float divisor)
|
{
|
if (dividend.IsZero() && divisor == 0.0f)
|
{
|
return NaN;
|
}
|
|
if (divisor == 0.0f)
|
{
|
return PositiveInfinity;
|
}
|
|
return new Complex32(dividend._real / divisor, dividend._imag / divisor);
|
}
|
|
/// <summary>
|
/// Computes the conjugate of a complex number and returns the result.
|
/// </summary>
|
public Complex32 Conjugate()
|
{
|
return new Complex32(_real, -_imag);
|
}
|
|
/// <summary>
|
/// Returns the multiplicative inverse of a complex number.
|
/// </summary>
|
public Complex32 Reciprocal()
|
{
|
if (IsZero())
|
{
|
return Zero;
|
}
|
|
return 1.0f / this;
|
}
|
|
#region IFormattable Members
|
|
/// <summary>
|
/// Converts the value of the current complex number to its equivalent string representation in Cartesian form.
|
/// </summary>
|
/// <returns>The string representation of the current instance in Cartesian form.</returns>
|
public override string ToString()
|
{
|
return string.Format(CultureInfo.CurrentCulture, "({0}, {1})", _real, _imag);
|
}
|
|
/// <summary>
|
/// Converts the value of the current complex number to its equivalent string representation
|
/// in Cartesian form by using the specified format for its real and imaginary parts.
|
/// </summary>
|
/// <returns>The string representation of the current instance in Cartesian form.</returns>
|
/// <param name="format">A standard or custom numeric format string.</param>
|
/// <exception cref="T:System.FormatException">
|
/// <paramref name="format" /> is not a valid format string.</exception>
|
public string ToString(string format)
|
{
|
return string.Format(CultureInfo.CurrentCulture, "({0}, {1})",
|
_real.ToString(format, CultureInfo.CurrentCulture),
|
_imag.ToString(format, CultureInfo.CurrentCulture));
|
}
|
|
/// <summary>
|
/// Converts the value of the current complex number to its equivalent string representation
|
/// in Cartesian form by using the specified culture-specific formatting information.
|
/// </summary>
|
/// <returns>The string representation of the current instance in Cartesian form, as specified by <paramref name="provider" />.</returns>
|
/// <param name="provider">An object that supplies culture-specific formatting information.</param>
|
public string ToString(IFormatProvider provider)
|
{
|
return string.Format(provider, "({0}, {1})", _real, _imag);
|
}
|
|
/// <summary>Converts the value of the current complex number to its equivalent string representation
|
/// in Cartesian form by using the specified format and culture-specific format information for its real and imaginary parts.</summary>
|
/// <returns>The string representation of the current instance in Cartesian form, as specified by <paramref name="format" /> and <paramref name="provider" />.</returns>
|
/// <param name="format">A standard or custom numeric format string.</param>
|
/// <param name="provider">An object that supplies culture-specific formatting information.</param>
|
/// <exception cref="T:System.FormatException">
|
/// <paramref name="format" /> is not a valid format string.</exception>
|
public string ToString(string format, IFormatProvider provider)
|
{
|
return string.Format(provider, "({0}, {1})",
|
_real.ToString(format, provider),
|
_imag.ToString(format, provider));
|
}
|
|
#endregion
|
|
#region IEquatable<Complex32> Members
|
|
/// <summary>
|
/// Checks if two complex numbers are equal. Two complex numbers are equal if their
|
/// corresponding real and imaginary components are equal.
|
/// </summary>
|
/// <returns>
|
/// Returns <c>true</c> if the two objects are the same object, or if their corresponding
|
/// real and imaginary components are equal, <c>false</c> otherwise.
|
/// </returns>
|
/// <param name="other">
|
/// The complex number to compare to with.
|
/// </param>
|
public bool Equals(Complex32 other)
|
{
|
if (IsNaN() || other.IsNaN())
|
{
|
return false;
|
}
|
|
if (IsInfinity() && other.IsInfinity())
|
{
|
return true;
|
}
|
|
return _real.AlmostEqual(other._real) && _imag.AlmostEqual(other._imag);
|
}
|
|
/// <summary>
|
/// The hash code for the complex number.
|
/// </summary>
|
/// <returns>
|
/// The hash code of the complex number.
|
/// </returns>
|
/// <remarks>
|
/// The hash code is calculated as
|
/// System.Math.Exp(ComplexMath.Absolute(complexNumber)).
|
/// </remarks>
|
public override int GetHashCode()
|
{
|
int hash = 27;
|
hash = (13 * hash) + _real.GetHashCode();
|
hash = (13 * hash) + _imag.GetHashCode();
|
return hash;
|
}
|
|
/// <summary>
|
/// Checks if two complex numbers are equal. Two complex numbers are equal if their
|
/// corresponding real and imaginary components are equal.
|
/// </summary>
|
/// <returns>
|
/// Returns <c>true</c> if the two objects are the same object, or if their corresponding
|
/// real and imaginary components are equal, <c>false</c> otherwise.
|
/// </returns>
|
/// <param name="obj">
|
/// The complex number to compare to with.
|
/// </param>
|
public override bool Equals(object obj)
|
{
|
return (obj is Complex32) && Equals((Complex32)obj);
|
}
|
|
#endregion
|
|
#region Parse Functions
|
|
/// <summary>
|
/// Creates a complex number based on a string. The string can be in the
|
/// following formats (without the quotes): 'n', 'ni', 'n +/- ni',
|
/// 'ni +/- n', 'n,n', 'n,ni,' '(n,n)', or '(n,ni)', where n is a float.
|
/// </summary>
|
/// <returns>
|
/// A complex number containing the value specified by the given string.
|
/// </returns>
|
/// <param name="value">
|
/// the string to parse.
|
/// </param>
|
/// <param name="formatProvider">
|
/// An <see cref="IFormatProvider"/> that supplies culture-specific
|
/// formatting information.
|
/// </param>
|
public static Complex32 Parse(string value, IFormatProvider formatProvider = null)
|
{
|
if (value == null)
|
{
|
throw new ArgumentNullException(nameof(value));
|
}
|
|
value = value.Trim();
|
if (value.Length == 0)
|
{
|
throw new FormatException();
|
}
|
|
// strip out parens
|
if (value.StartsWith("(", StringComparison.Ordinal))
|
{
|
if (!value.EndsWith(")", StringComparison.Ordinal))
|
{
|
throw new FormatException();
|
}
|
|
value = value.Substring(1, value.Length - 2).Trim();
|
}
|
|
// keywords
|
var numberFormatInfo = formatProvider.GetNumberFormatInfo();
|
var textInfo = formatProvider.GetTextInfo();
|
var keywords =
|
new[]
|
{
|
textInfo.ListSeparator, numberFormatInfo.NaNSymbol,
|
numberFormatInfo.NegativeInfinitySymbol, numberFormatInfo.PositiveInfinitySymbol,
|
"+", "-", "i", "j"
|
};
|
|
// lexing
|
var tokens = new LinkedList<string>();
|
GlobalizationHelper.Tokenize(tokens.AddFirst(value), keywords, 0);
|
var token = tokens.First;
|
|
// parse the left part
|
bool isLeftPartImaginary;
|
var leftPart = ParsePart(ref token, out isLeftPartImaginary, formatProvider);
|
if (token == null)
|
{
|
return isLeftPartImaginary ? new Complex32(0, leftPart) : new Complex32(leftPart, 0);
|
}
|
|
// parse the right part
|
if (token.Value == textInfo.ListSeparator)
|
{
|
// format: real,imag
|
token = token.Next;
|
|
if (isLeftPartImaginary)
|
{
|
// left must not contain 'i', right doesn't matter.
|
throw new FormatException();
|
}
|
|
bool isRightPartImaginary;
|
var rightPart = ParsePart(ref token, out isRightPartImaginary, formatProvider);
|
|
return new Complex32(leftPart, rightPart);
|
}
|
else
|
{
|
// format: real + imag
|
bool isRightPartImaginary;
|
var rightPart = ParsePart(ref token, out isRightPartImaginary, formatProvider);
|
|
if (!(isLeftPartImaginary ^ isRightPartImaginary))
|
{
|
// either left or right part must contain 'i', but not both.
|
throw new FormatException();
|
}
|
|
return isLeftPartImaginary ? new Complex32(rightPart, leftPart) : new Complex32(leftPart, rightPart);
|
}
|
}
|
|
/// <summary>
|
/// Parse a part (real or complex) from a complex number.
|
/// </summary>
|
/// <param name="token">Start Token.</param>
|
/// <param name="imaginary">Is set to <c>true</c> if the part identified itself as being imaginary.</param>
|
/// <param name="format">
|
/// An <see cref="IFormatProvider"/> that supplies culture-specific
|
/// formatting information.
|
/// </param>
|
/// <returns>Resulting part as float.</returns>
|
/// <exception cref="FormatException"/>
|
private static float ParsePart(ref LinkedListNode<string> token, out bool imaginary, IFormatProvider format)
|
{
|
imaginary = false;
|
if (token == null)
|
{
|
throw new FormatException();
|
}
|
|
// handle prefix modifiers
|
if (token.Value == "+")
|
{
|
token = token.Next;
|
|
if (token == null)
|
{
|
throw new FormatException();
|
}
|
}
|
|
var negative = false;
|
if (token.Value == "-")
|
{
|
negative = true;
|
token = token.Next;
|
|
if (token == null)
|
{
|
throw new FormatException();
|
}
|
}
|
|
// handle prefix imaginary symbol
|
if (String.Compare(token.Value, "i", StringComparison.OrdinalIgnoreCase) == 0
|
|| String.Compare(token.Value, "j", StringComparison.OrdinalIgnoreCase) == 0)
|
{
|
imaginary = true;
|
token = token.Next;
|
|
if (token == null)
|
{
|
return negative ? -1 : 1;
|
}
|
}
|
|
#if NETSTANDARD1_3
|
var value = GlobalizationHelper.ParseSingle(ref token);
|
#else
|
var value = GlobalizationHelper.ParseSingle(ref token, format.GetCultureInfo());
|
#endif
|
|
// handle suffix imaginary symbol
|
if (token != null && (String.Compare(token.Value, "i", StringComparison.OrdinalIgnoreCase) == 0
|
|| String.Compare(token.Value, "j", StringComparison.OrdinalIgnoreCase) == 0))
|
{
|
if (imaginary)
|
{
|
// only one time allowed: either prefix or suffix, or neither.
|
throw new FormatException();
|
}
|
|
imaginary = true;
|
token = token.Next;
|
}
|
|
return negative ? -value : value;
|
}
|
|
/// <summary>
|
/// Converts the string representation of a complex number to a single-precision complex number equivalent.
|
/// A return value indicates whether the conversion succeeded or failed.
|
/// </summary>
|
/// <param name="value">
|
/// A string containing a complex number to convert.
|
/// </param>
|
/// <param name="result">
|
/// The parsed value.
|
/// </param>
|
/// <returns>
|
/// If the conversion succeeds, the result will contain a complex number equivalent to value.
|
/// Otherwise the result will contain complex32.Zero. This parameter is passed uninitialized
|
/// </returns>
|
public static bool TryParse(string value, out Complex32 result)
|
{
|
return TryParse(value, null, out result);
|
}
|
|
/// <summary>
|
/// Converts the string representation of a complex number to single-precision complex number equivalent.
|
/// A return value indicates whether the conversion succeeded or failed.
|
/// </summary>
|
/// <param name="value">
|
/// A string containing a complex number to convert.
|
/// </param>
|
/// <param name="formatProvider">
|
/// An <see cref="IFormatProvider"/> that supplies culture-specific formatting information about value.
|
/// </param>
|
/// <param name="result">
|
/// The parsed value.
|
/// </param>
|
/// <returns>
|
/// If the conversion succeeds, the result will contain a complex number equivalent to value.
|
/// Otherwise the result will contain complex32.Zero. This parameter is passed uninitialized
|
/// </returns>
|
public static bool TryParse(string value, IFormatProvider formatProvider, out Complex32 result)
|
{
|
bool ret;
|
try
|
{
|
result = Parse(value, formatProvider);
|
ret = true;
|
}
|
catch (ArgumentNullException)
|
{
|
result = Zero;
|
ret = false;
|
}
|
catch (FormatException)
|
{
|
result = Zero;
|
ret = false;
|
}
|
|
return ret;
|
}
|
|
#endregion
|
|
#region Conversion
|
|
/// <summary>
|
/// Explicit conversion of a real decimal to a <c>Complex32</c>.
|
/// </summary>
|
/// <param name="value">The decimal value to convert.</param>
|
/// <returns>The result of the conversion.</returns>
|
public static explicit operator Complex32(decimal value)
|
{
|
return new Complex32((float)value, 0.0f);
|
}
|
|
/// <summary>
|
/// Explicit conversion of a <c>Complex</c> to a <c>Complex32</c>.
|
/// </summary>
|
/// <param name="value">The decimal value to convert.</param>
|
/// <returns>The result of the conversion.</returns>
|
public static explicit operator Complex32(Complex value)
|
{
|
return new Complex32((float)value.Real, (float)value.Imaginary);
|
}
|
|
/// <summary>
|
/// Implicit conversion of a real byte to a <c>Complex32</c>.
|
/// </summary>
|
/// <param name="value">The byte value to convert.</param>
|
/// <returns>The result of the conversion.</returns>
|
public static implicit operator Complex32(byte value)
|
{
|
return new Complex32(value, 0.0f);
|
}
|
|
/// <summary>
|
/// Implicit conversion of a real short to a <c>Complex32</c>.
|
/// </summary>
|
/// <param name="value">The short value to convert.</param>
|
/// <returns>The result of the conversion.</returns>
|
public static implicit operator Complex32(short value)
|
{
|
return new Complex32(value, 0.0f);
|
}
|
|
/// <summary>
|
/// Implicit conversion of a signed byte to a <c>Complex32</c>.
|
/// </summary>
|
/// <param name="value">The signed byte value to convert.</param>
|
/// <returns>The result of the conversion.</returns>
|
[CLSCompliant(false)]
|
public static implicit operator Complex32(sbyte value)
|
{
|
return new Complex32(value, 0.0f);
|
}
|
|
/// <summary>
|
/// Implicit conversion of a unsigned real short to a <c>Complex32</c>.
|
/// </summary>
|
/// <param name="value">The unsigned short value to convert.</param>
|
/// <returns>The result of the conversion.</returns>
|
[CLSCompliant(false)]
|
public static implicit operator Complex32(ushort value)
|
{
|
return new Complex32(value, 0.0f);
|
}
|
|
/// <summary>
|
/// Implicit conversion of a real int to a <c>Complex32</c>.
|
/// </summary>
|
/// <param name="value">The int value to convert.</param>
|
/// <returns>The result of the conversion.</returns>
|
public static implicit operator Complex32(int value)
|
{
|
return new Complex32(value, 0.0f);
|
}
|
|
/// <summary>
|
/// Implicit conversion of a BigInteger int to a <c>Complex32</c>.
|
/// </summary>
|
/// <param name="value">The BigInteger value to convert.</param>
|
/// <returns>The result of the conversion.</returns>
|
public static implicit operator Complex32(BigInteger value)
|
{
|
return new Complex32((long)value, 0.0f);
|
}
|
|
/// <summary>
|
/// Implicit conversion of a real long to a <c>Complex32</c>.
|
/// </summary>
|
/// <param name="value">The long value to convert.</param>
|
/// <returns>The result of the conversion.</returns>
|
public static implicit operator Complex32(long value)
|
{
|
return new Complex32(value, 0.0f);
|
}
|
|
/// <summary>
|
/// Implicit conversion of a real uint to a <c>Complex32</c>.
|
/// </summary>
|
/// <param name="value">The uint value to convert.</param>
|
/// <returns>The result of the conversion.</returns>
|
[CLSCompliant(false)]
|
public static implicit operator Complex32(uint value)
|
{
|
return new Complex32(value, 0.0f);
|
}
|
|
/// <summary>
|
/// Implicit conversion of a real ulong to a <c>Complex32</c>.
|
/// </summary>
|
/// <param name="value">The ulong value to convert.</param>
|
/// <returns>The result of the conversion.</returns>
|
[CLSCompliant(false)]
|
public static implicit operator Complex32(ulong value)
|
{
|
return new Complex32(value, 0.0f);
|
}
|
|
/// <summary>
|
/// Implicit conversion of a real float to a <c>Complex32</c>.
|
/// </summary>
|
/// <param name="value">The float value to convert.</param>
|
/// <returns>The result of the conversion.</returns>
|
public static implicit operator Complex32(float value)
|
{
|
return new Complex32(value, 0.0f);
|
}
|
|
/// <summary>
|
/// Implicit conversion of a real double to a <c>Complex32</c>.
|
/// </summary>
|
/// <param name="value">The double value to convert.</param>
|
/// <returns>The result of the conversion.</returns>
|
public static explicit operator Complex32(double value)
|
{
|
return new Complex32((float)value, 0.0f);
|
}
|
|
/// <summary>
|
/// Converts this <c>Complex32</c> to a <see cref="Complex"/>.
|
/// </summary>
|
/// <returns>A <see cref="Complex"/> with the same values as this <c>Complex32</c>.</returns>
|
public Complex ToComplex()
|
{
|
return new Complex(_real, _imag);
|
}
|
|
#endregion
|
|
/// <summary>
|
/// Returns the additive inverse of a specified complex number.
|
/// </summary>
|
/// <returns>The result of the real and imaginary components of the value parameter multiplied by -1.</returns>
|
/// <param name="value">A complex number.</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public static Complex32 Negate(Complex32 value)
|
{
|
return -value;
|
}
|
|
/// <summary>
|
/// Computes the conjugate of a complex number and returns the result.
|
/// </summary>
|
/// <returns>The conjugate of <paramref name="value" />.</returns>
|
/// <param name="value">A complex number.</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public static Complex32 Conjugate(Complex32 value)
|
{
|
return value.Conjugate();
|
}
|
|
/// <summary>
|
/// Adds two complex numbers and returns the result.
|
/// </summary>
|
/// <returns>The sum of <paramref name="left" /> and <paramref name="right" />.</returns>
|
/// <param name="left">The first complex number to add.</param>
|
/// <param name="right">The second complex number to add.</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public static Complex32 Add(Complex32 left, Complex32 right)
|
{
|
return left + right;
|
}
|
|
/// <summary>
|
/// Subtracts one complex number from another and returns the result.
|
/// </summary>
|
/// <returns>The result of subtracting <paramref name="right" /> from <paramref name="left" />.</returns>
|
/// <param name="left">The value to subtract from (the minuend).</param>
|
/// <param name="right">The value to subtract (the subtrahend).</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public static Complex32 Subtract(Complex32 left, Complex32 right)
|
{
|
return left - right;
|
}
|
|
/// <summary>
|
/// Returns the product of two complex numbers.
|
/// </summary>
|
/// <returns>The product of the <paramref name="left" /> and <paramref name="right" /> parameters.</returns>
|
/// <param name="left">The first complex number to multiply.</param>
|
/// <param name="right">The second complex number to multiply.</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public static Complex32 Multiply(Complex32 left, Complex32 right)
|
{
|
return left * right;
|
}
|
|
/// <summary>
|
/// Divides one complex number by another and returns the result.
|
/// </summary>
|
/// <returns>The quotient of the division.</returns>
|
/// <param name="dividend">The complex number to be divided.</param>
|
/// <param name="divisor">The complex number to divide by.</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public static Complex32 Divide(Complex32 dividend, Complex32 divisor)
|
{
|
return dividend / divisor;
|
}
|
/// <summary>
|
/// Returns the multiplicative inverse of a complex number.
|
/// </summary>
|
/// <returns>The reciprocal of <paramref name="value" />.</returns>
|
/// <param name="value">A complex number.</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public static Complex32 Reciprocal(Complex32 value)
|
{
|
return value.Reciprocal();
|
}
|
|
/// <summary>
|
/// Returns the square root of a specified complex number.
|
/// </summary>
|
/// <returns>The square root of <paramref name="value" />.</returns>
|
/// <param name="value">A complex number.</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public static Complex32 Sqrt(Complex32 value)
|
{
|
return value.SquareRoot();
|
}
|
|
/// <summary>
|
/// Gets the absolute value (or magnitude) of a complex number.
|
/// </summary>
|
/// <returns>The absolute value of <paramref name="value" />.</returns>
|
/// <param name="value">A complex number.</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public static double Abs(Complex32 value)
|
{
|
return value.Magnitude;
|
}
|
|
/// <summary>
|
/// Returns e raised to the power specified by a complex number.
|
/// </summary>
|
/// <returns>The number e raised to the power <paramref name="value" />.</returns>
|
/// <param name="value">A complex number that specifies a power.</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public static Complex32 Exp(Complex32 value)
|
{
|
return value.Exponential();
|
}
|
|
/// <summary>
|
/// Returns a specified complex number raised to a power specified by a complex number.
|
/// </summary>
|
/// <returns>The complex number <paramref name="value" /> raised to the power <paramref name="power" />.</returns>
|
/// <param name="value">A complex number to be raised to a power.</param>
|
/// <param name="power">A complex number that specifies a power.</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public static Complex32 Pow(Complex32 value, Complex32 power)
|
{
|
return value.Power(power);
|
}
|
|
/// <summary>
|
/// Returns a specified complex number raised to a power specified by a single-precision floating-point number.
|
/// </summary>
|
/// <returns>The complex number <paramref name="value" /> raised to the power <paramref name="power" />.</returns>
|
/// <param name="value">A complex number to be raised to a power.</param>
|
/// <param name="power">A single-precision floating-point number that specifies a power.</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public static Complex32 Pow(Complex32 value, float power)
|
{
|
return value.Power(power);
|
}
|
|
/// <summary>
|
/// Returns the natural (base e) logarithm of a specified complex number.
|
/// </summary>
|
/// <returns>The natural (base e) logarithm of <paramref name="value" />.</returns>
|
/// <param name="value">A complex number.</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public static Complex32 Log(Complex32 value)
|
{
|
return value.NaturalLogarithm();
|
}
|
|
/// <summary>
|
/// Returns the logarithm of a specified complex number in a specified base.
|
/// </summary>
|
/// <returns>The logarithm of <paramref name="value" /> in base <paramref name="baseValue" />.</returns>
|
/// <param name="value">A complex number.</param>
|
/// <param name="baseValue">The base of the logarithm.</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public static Complex32 Log(Complex32 value, float baseValue)
|
{
|
return value.Logarithm(baseValue);
|
}
|
|
/// <summary>
|
/// Returns the base-10 logarithm of a specified complex number.
|
/// </summary>
|
/// <returns>The base-10 logarithm of <paramref name="value" />.</returns>
|
/// <param name="value">A complex number.</param>
|
[TargetedPatchingOptOut("Performance critical to inline this type of method across NGen image boundaries")]
|
public static Complex32 Log10(Complex32 value)
|
{
|
return value.CommonLogarithm();
|
}
|
|
/// <summary>
|
/// Returns the sine of the specified complex number.
|
/// </summary>
|
/// <returns>The sine of <paramref name="value" />.</returns>
|
/// <param name="value">A complex number.</param>
|
public static Complex32 Sin(Complex32 value)
|
{
|
return (Complex32)Trig.Sin(value.ToComplex());
|
}
|
|
/// <summary>
|
/// Returns the cosine of the specified complex number.
|
/// </summary>
|
/// <returns>The cosine of <paramref name="value" />.</returns>
|
/// <param name="value">A complex number.</param>
|
public static Complex32 Cos(Complex32 value)
|
{
|
return (Complex32)Trig.Cos(value.ToComplex());
|
}
|
|
/// <summary>
|
/// Returns the tangent of the specified complex number.
|
/// </summary>
|
/// <returns>The tangent of <paramref name="value" />.</returns>
|
/// <param name="value">A complex number.</param>
|
public static Complex32 Tan(Complex32 value)
|
{
|
return (Complex32)Trig.Tan(value.ToComplex());
|
}
|
|
/// <summary>
|
/// Returns the angle that is the arc sine of the specified complex number.
|
/// </summary>
|
/// <returns>The angle which is the arc sine of <paramref name="value" />.</returns>
|
/// <param name="value">A complex number.</param>
|
public static Complex32 Asin(Complex32 value)
|
{
|
return (Complex32)Trig.Asin(value.ToComplex());
|
}
|
|
/// <summary>
|
/// Returns the angle that is the arc cosine of the specified complex number.
|
/// </summary>
|
/// <returns>The angle, measured in radians, which is the arc cosine of <paramref name="value" />.</returns>
|
/// <param name="value">A complex number that represents a cosine.</param>
|
public static Complex32 Acos(Complex32 value)
|
{
|
return (Complex32)Trig.Acos(value.ToComplex());
|
}
|
|
/// <summary>
|
/// Returns the angle that is the arc tangent of the specified complex number.
|
/// </summary>
|
/// <returns>The angle that is the arc tangent of <paramref name="value" />.</returns>
|
/// <param name="value">A complex number.</param>
|
public static Complex32 Atan(Complex32 value)
|
{
|
return (Complex32)Trig.Atan(value.ToComplex());
|
}
|
|
/// <summary>
|
/// Returns the hyperbolic sine of the specified complex number.
|
/// </summary>
|
/// <returns>The hyperbolic sine of <paramref name="value" />.</returns>
|
/// <param name="value">A complex number.</param>
|
public static Complex32 Sinh(Complex32 value)
|
{
|
return (Complex32)Trig.Sinh(value.ToComplex());
|
}
|
|
/// <summary>
|
/// Returns the hyperbolic cosine of the specified complex number.
|
/// </summary>
|
/// <returns>The hyperbolic cosine of <paramref name="value" />.</returns>
|
/// <param name="value">A complex number.</param>
|
public static Complex32 Cosh(Complex32 value)
|
{
|
return (Complex32)Trig.Cosh(value.ToComplex());
|
}
|
|
/// <summary>
|
/// Returns the hyperbolic tangent of the specified complex number.
|
/// </summary>
|
/// <returns>The hyperbolic tangent of <paramref name="value" />.</returns>
|
/// <param name="value">A complex number.</param>
|
public static Complex32 Tanh(Complex32 value)
|
{
|
return (Complex32)Trig.Tanh(value.ToComplex());
|
}
|
}
|
}
|