// <copyright file="NumericalJacobian.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2015 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
|
namespace IStation.Numerics.Differentiation
|
{
|
/// <summary>
|
/// Class for evaluating the Jacobian of a function using finite differences.
|
/// By default, a central 3-point method is used.
|
/// </summary>
|
public class NumericalJacobian
|
{
|
/// <summary>
|
/// Number of function evaluations.
|
/// </summary>
|
public int FunctionEvaluations => _df.Evaluations;
|
|
private readonly NumericalDerivative _df;
|
|
/// <summary>
|
/// Creates a numerical Jacobian object with a three point central difference method.
|
/// </summary>
|
public NumericalJacobian() : this(3, 1) { }
|
|
/// <summary>
|
/// Creates a numerical Jacobian with a specified differentiation scheme.
|
/// </summary>
|
/// <param name="points">Number of points for Jacobian evaluation.</param>
|
/// <param name="center">Center point for differentiation.</param>
|
public NumericalJacobian(int points, int center)
|
{
|
_df = new NumericalDerivative(points, center);
|
}
|
|
/// <summary>
|
/// Evaluates the Jacobian of scalar univariate function f at point x.
|
/// </summary>
|
/// <param name="f">Scalar univariate function handle.</param>
|
/// <param name="x">Point at which to evaluate Jacobian.</param>
|
/// <returns>Jacobian vector.</returns>
|
public double[] Evaluate(Func<double, double> f, double x)
|
{
|
return new[] { _df.EvaluateDerivative(f, x, 1) };
|
}
|
|
/// <summary>
|
/// Evaluates the Jacobian of a multivariate function f at vector x.
|
/// </summary>
|
/// <remarks>
|
/// This function assumes that the length of vector x consistent with the argument count of f.
|
/// </remarks>
|
/// <param name="f">Multivariate function handle.</param>
|
/// <param name="x">Points at which to evaluate Jacobian.</param>
|
/// <returns>Jacobian vector.</returns>
|
public double[] Evaluate(Func<double[], double> f, double[] x)
|
{
|
var jacobian = new double[x.Length];
|
|
for (var i = 0; i < jacobian.Length; i++)
|
jacobian[i] = _df.EvaluatePartialDerivative(f, x, i, 1);
|
|
return jacobian;
|
}
|
|
/// <summary>
|
/// Evaluates the Jacobian of a multivariate function f at vector x given a current function value.
|
/// </summary>
|
/// <remarks>
|
/// To minimize the number of function evaluations, a user can supply the current value of the function
|
/// to be used in computing the Jacobian. This value must correspond to the "center" location for the
|
/// finite differencing. If a scheme is used where the center value is not evaluated, this will provide no
|
/// added efficiency. This method also assumes that the length of vector x consistent with the argument count of f.
|
/// </remarks>
|
/// <param name="f">Multivariate function handle.</param>
|
/// <param name="x">Points at which to evaluate Jacobian.</param>
|
/// <param name="currentValue">Current function value at finite difference center.</param>
|
/// <returns>Jacobian vector.</returns>
|
public double[] Evaluate(Func<double[], double> f, double[] x, double currentValue)
|
{
|
var jacobian = new double[x.Length];
|
|
for (var i = 0; i < jacobian.Length; i++)
|
jacobian[i] = _df.EvaluatePartialDerivative(f, x, i, 1, currentValue);
|
|
return jacobian;
|
}
|
|
/// <summary>
|
/// Evaluates the Jacobian of a multivariate function array f at vector x.
|
/// </summary>
|
/// <param name="f">Multivariate function array handle.</param>
|
/// <param name="x">Vector at which to evaluate Jacobian.</param>
|
/// <returns>Jacobian matrix.</returns>
|
public double[,] Evaluate(Func<double[], double>[] f, double[] x)
|
{
|
var jacobian = new double[f.Length, x.Length];
|
for (int i = 0; i < f.Length; i++)
|
{
|
var gradient = Evaluate(f[i], x);
|
for (int j = 0; j < gradient.Length; j++)
|
jacobian[i, j] = gradient[j];
|
}
|
|
return jacobian;
|
}
|
|
/// <summary>
|
/// Evaluates the Jacobian of a multivariate function array f at vector x given a vector of current function values.
|
/// </summary>
|
/// <remarks>
|
/// To minimize the number of function evaluations, a user can supply a vector of current values of the functions
|
/// to be used in computing the Jacobian. These value must correspond to the "center" location for the
|
/// finite differencing. If a scheme is used where the center value is not evaluated, this will provide no
|
/// added efficiency. This method also assumes that the length of vector x consistent with the argument count of f.
|
/// </remarks>
|
/// <param name="f">Multivariate function array handle.</param>
|
/// <param name="x">Vector at which to evaluate Jacobian.</param>
|
/// <param name="currentValues">Vector of current function values.</param>
|
/// <returns>Jacobian matrix.</returns>
|
public double[,] Evaluate(Func<double[], double>[] f, double[] x, double[] currentValues)
|
{
|
var jacobian = new double[f.Length, x.Length];
|
for (int i = 0; i < f.Length; i++)
|
{
|
var gradient = Evaluate(f[i], x, currentValues[i]);
|
for (int j = 0; j < gradient.Length; j++)
|
jacobian[i, j] = gradient[j];
|
}
|
|
return jacobian;
|
}
|
|
/// <summary>
|
/// Resets the function evaluation counter for the Jacobian.
|
/// </summary>
|
public void ResetFunctionEvaluations()
|
{
|
_df.ResetEvaluations();
|
}
|
}
|
}
|