// <copyright file="SimpsonRule.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
|
namespace IStation.Numerics.Integration
|
{
|
/// <summary>
|
/// Approximation algorithm for definite integrals by Simpson's rule.
|
/// </summary>
|
public static class SimpsonRule
|
{
|
/// <summary>
|
/// Direct 3-point approximation of the definite integral in the provided interval by Simpson's rule.
|
/// </summary>
|
/// <param name="f">The analytic smooth function to integrate.</param>
|
/// <param name="intervalBegin">Where the interval starts, inclusive and finite.</param>
|
/// <param name="intervalEnd">Where the interval stops, inclusive and finite.</param>
|
/// <returns>Approximation of the finite integral in the given interval.</returns>
|
public static double IntegrateThreePoint(Func<double, double> f, double intervalBegin, double intervalEnd)
|
{
|
if (f == null)
|
{
|
throw new ArgumentNullException(nameof(f));
|
}
|
|
double midpoint = (intervalEnd + intervalBegin)/2;
|
return (intervalEnd - intervalBegin)/6*(f(intervalBegin) + f(intervalEnd) + (4*f(midpoint)));
|
}
|
|
/// <summary>
|
/// Composite N-point approximation of the definite integral in the provided interval by Simpson's rule.
|
/// </summary>
|
/// <param name="f">The analytic smooth function to integrate.</param>
|
/// <param name="intervalBegin">Where the interval starts, inclusive and finite.</param>
|
/// <param name="intervalEnd">Where the interval stops, inclusive and finite.</param>
|
/// <param name="numberOfPartitions">Even number of composite subdivision partitions.</param>
|
/// <returns>Approximation of the finite integral in the given interval.</returns>
|
public static double IntegrateComposite(Func<double, double> f, double intervalBegin, double intervalEnd, int numberOfPartitions)
|
{
|
if (f == null)
|
{
|
throw new ArgumentNullException(nameof(f));
|
}
|
|
if (numberOfPartitions <= 0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(numberOfPartitions), "Value must be positive (and not zero).");
|
}
|
|
if (numberOfPartitions.IsOdd())
|
{
|
throw new ArgumentException("Value must be even.", nameof(numberOfPartitions));
|
}
|
|
double step = (intervalEnd - intervalBegin)/numberOfPartitions;
|
double factor = step/3;
|
|
double offset = step;
|
int m = 4;
|
double sum = f(intervalBegin) + f(intervalEnd);
|
for (int i = 0; i < numberOfPartitions - 1; i++)
|
{
|
// NOTE (cdrnet, 2009-01-07): Do not combine intervalBegin and offset (numerical stability)
|
sum += m*f(intervalBegin + offset);
|
m = 6 - m;
|
offset += step;
|
}
|
|
return factor*sum;
|
}
|
}
|
}
|