// <copyright file="Barycentric.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2014 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using System.Linq;
|
|
namespace IStation.Numerics.Interpolation
|
{
|
/// <summary>
|
/// Barycentric Interpolation Algorithm.
|
/// </summary>
|
/// <remarks>Supports neither differentiation nor integration.</remarks>
|
public class Barycentric : IInterpolation
|
{
|
readonly double[] _x;
|
readonly double[] _y;
|
readonly double[] _w;
|
|
/// <param name="x">Sample points (N), sorted ascendingly.</param>
|
/// <param name="y">Sample values (N), sorted ascendingly by x.</param>
|
/// <param name="w">Barycentric weights (N), sorted ascendingly by x.</param>
|
public Barycentric(double[] x, double[] y, double[] w)
|
{
|
if (x.Length != y.Length || x.Length != w.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
if (x.Length < 1)
|
{
|
throw new ArgumentException("The given array is too small. It must be at least 1 long.", nameof(x));
|
}
|
|
_x = x;
|
_y = y;
|
_w = w;
|
}
|
|
/// <summary>
|
/// Create a barycentric polynomial interpolation from a set of (x,y) value pairs with equidistant x, sorted ascendingly by x.
|
/// </summary>
|
public static Barycentric InterpolatePolynomialEquidistantSorted(double[] x, double[] y)
|
{
|
if (x.Length != y.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
if (x.Length < 1)
|
{
|
throw new ArgumentException("The given array is too small. It must be at least 1 long.", nameof(x));
|
}
|
|
var weights = new double[x.Length];
|
weights[0] = 1.0;
|
for (int i = 1; i < weights.Length; i++)
|
{
|
weights[i] = -(weights[i - 1]*(weights.Length - i))/i;
|
}
|
|
return new Barycentric(x, y, weights);
|
}
|
|
/// <summary>
|
/// Create a barycentric polynomial interpolation from an unordered set of (x,y) value pairs with equidistant x.
|
/// WARNING: Works in-place and can thus causes the data array to be reordered.
|
/// </summary>
|
public static Barycentric InterpolatePolynomialEquidistantInplace(double[] x, double[] y)
|
{
|
if (x.Length != y.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
Sorting.Sort(x, y);
|
return InterpolatePolynomialEquidistantSorted(x, y);
|
}
|
|
/// <summary>
|
/// Create a barycentric polynomial interpolation from an unsorted set of (x,y) value pairs with equidistant x.
|
/// </summary>
|
public static Barycentric InterpolatePolynomialEquidistant(IEnumerable<double> x, IEnumerable<double> y)
|
{
|
// note: we must make a copy, even if the input was arrays already
|
return InterpolatePolynomialEquidistantInplace(x.ToArray(), y.ToArray());
|
}
|
|
/// <summary>
|
/// Create a barycentric polynomial interpolation from a set of values related to linearly/equidistant spaced points within an interval.
|
/// </summary>
|
public static Barycentric InterpolatePolynomialEquidistant(double leftBound, double rightBound, IEnumerable<double> y)
|
{
|
var yy = (y as double[]) ?? y.ToArray();
|
var xx = Generate.LinearSpaced(yy.Length, leftBound, rightBound);
|
return InterpolatePolynomialEquidistantSorted(xx, yy);
|
}
|
|
/// <summary>
|
/// Create a barycentric rational interpolation without poles, using Mike Floater and Kai Hormann's Algorithm.
|
/// The values are assumed to be sorted ascendingly by x.
|
/// </summary>
|
/// <param name="x">Sample points (N), sorted ascendingly.</param>
|
/// <param name="y">Sample values (N), sorted ascendingly by x.</param>
|
/// <param name="order">
|
/// Order of the interpolation scheme, 0 <= order <= N.
|
/// In most cases a value between 3 and 8 gives good results.
|
/// </param>
|
public static Barycentric InterpolateRationalFloaterHormannSorted(double[] x, double[] y, int order)
|
{
|
if (x.Length != y.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
if (x.Length < 1)
|
{
|
throw new ArgumentException("The given array is too small. It must be at least 1 long.", nameof(x));
|
}
|
|
if (0 > order || x.Length <= order)
|
{
|
throw new ArgumentOutOfRangeException(nameof(order));
|
}
|
|
var weights = new double[x.Length];
|
|
// order: odd -> negative, even -> positive
|
double sign = ((order & 0x1) == 0x1) ? -1.0 : 1.0;
|
|
// compute barycentric weights
|
for (int k = 0; k < x.Length; k++)
|
{
|
double s = 0;
|
for (int i = Math.Max(k - order, 0); i <= Math.Min(k, weights.Length - 1 - order); i++)
|
{
|
double v = 1;
|
for (int j = i; j <= i + order; j++)
|
{
|
if (j != k)
|
{
|
v = v/Math.Abs(x[k] - x[j]);
|
}
|
}
|
|
s = s + v;
|
}
|
|
weights[k] = sign*s;
|
sign = -sign;
|
}
|
|
return new Barycentric(x, y, weights);
|
}
|
|
/// <summary>
|
/// Create a barycentric rational interpolation without poles, using Mike Floater and Kai Hormann's Algorithm.
|
/// WARNING: Works in-place and can thus causes the data array to be reordered.
|
/// </summary>
|
/// <param name="x">Sample points (N), no sorting assumed.</param>
|
/// <param name="y">Sample values (N).</param>
|
/// <param name="order">
|
/// Order of the interpolation scheme, 0 <= order <= N.
|
/// In most cases a value between 3 and 8 gives good results.
|
/// </param>
|
public static Barycentric InterpolateRationalFloaterHormannInplace(double[] x, double[] y, int order)
|
{
|
if (x.Length != y.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
Sorting.Sort(x, y);
|
return InterpolateRationalFloaterHormannSorted(x, y, order);
|
}
|
|
/// <summary>
|
/// Create a barycentric rational interpolation without poles, using Mike Floater and Kai Hormann's Algorithm.
|
/// </summary>
|
/// <param name="x">Sample points (N), no sorting assumed.</param>
|
/// <param name="y">Sample values (N).</param>
|
/// <param name="order">
|
/// Order of the interpolation scheme, 0 <= order <= N.
|
/// In most cases a value between 3 and 8 gives good results.
|
/// </param>
|
public static Barycentric InterpolateRationalFloaterHormann(IEnumerable<double> x, IEnumerable<double> y, int order)
|
{
|
// note: we must make a copy, even if the input was arrays already
|
return InterpolateRationalFloaterHormannInplace(x.ToArray(), y.ToArray(), order);
|
}
|
|
/// <summary>
|
/// Create a barycentric rational interpolation without poles, using Mike Floater and Kai Hormann's Algorithm.
|
/// The values are assumed to be sorted ascendingly by x.
|
/// </summary>
|
/// <param name="x">Sample points (N), sorted ascendingly.</param>
|
/// <param name="y">Sample values (N), sorted ascendingly by x.</param>
|
public static Barycentric InterpolateRationalFloaterHormannSorted(double[] x, double[] y)
|
{
|
return InterpolateRationalFloaterHormannSorted(x, y, Math.Min(3, x.Length - 1));
|
}
|
|
/// <summary>
|
/// Create a barycentric rational interpolation without poles, using Mike Floater and Kai Hormann's Algorithm.
|
/// WARNING: Works in-place and can thus causes the data array to be reordered.
|
/// </summary>
|
/// <param name="x">Sample points (N), no sorting assumed.</param>
|
/// <param name="y">Sample values (N).</param>
|
public static Barycentric InterpolateRationalFloaterHormannInplace(double[] x, double[] y)
|
{
|
return InterpolateRationalFloaterHormannInplace(x, y, Math.Min(3, x.Length - 1));
|
}
|
|
/// <summary>
|
/// Create a barycentric rational interpolation without poles, using Mike Floater and Kai Hormann's Algorithm.
|
/// </summary>
|
/// <param name="x">Sample points (N), no sorting assumed.</param>
|
/// <param name="y">Sample values (N).</param>
|
public static Barycentric InterpolateRationalFloaterHormann(IEnumerable<double> x, IEnumerable<double> y)
|
{
|
// note: we must make a copy, even if the input was arrays already
|
var xx = x.ToArray();
|
var order = Math.Min(3, xx.Length - 1);
|
return InterpolateRationalFloaterHormannInplace(xx, y.ToArray(), order);
|
}
|
|
/// <summary>
|
/// Gets a value indicating whether the algorithm supports differentiation (interpolated derivative).
|
/// </summary>
|
bool IInterpolation.SupportsDifferentiation => false;
|
|
/// <summary>
|
/// Gets a value indicating whether the algorithm supports integration (interpolated quadrature).
|
/// </summary>
|
bool IInterpolation.SupportsIntegration => false;
|
|
/// <summary>
|
/// Interpolate at point t.
|
/// </summary>
|
/// <param name="t">Point t to interpolate at.</param>
|
/// <returns>Interpolated value x(t).</returns>
|
public double Interpolate(double t)
|
{
|
// trivial case: only one sample?
|
if (_x.Length == 1)
|
{
|
return _y[0];
|
}
|
|
// evaluate closest point and offset from that point (no sorting assumed)
|
int closestPoint = 0;
|
double offset = t - _x[0];
|
for (int i = 1; i < _x.Length; i++)
|
{
|
if (Math.Abs(t - _x[i]) < Math.Abs(offset))
|
{
|
offset = t - _x[i];
|
closestPoint = i;
|
}
|
}
|
|
// trivial case: on a known sample point?
|
if (offset == 0.0)
|
{
|
// NOTE (cdrnet, 2009-08) not offset.AlmostZero() by design
|
return _y[closestPoint];
|
}
|
|
if (Math.Abs(offset) > 1e-150)
|
{
|
// no need to guard against overflow, so use fast formula
|
closestPoint = -1;
|
offset = 1.0;
|
}
|
|
double s1 = 0.0;
|
double s2 = 0.0;
|
for (int i = 0; i < _x.Length; i++)
|
{
|
if (i != closestPoint)
|
{
|
double v = offset*_w[i]/(t - _x[i]);
|
s1 = s1 + (v*_y[i]);
|
s2 = s2 + v;
|
}
|
else
|
{
|
double v = _w[i];
|
s1 = s1 + (v*_y[i]);
|
s2 = s2 + v;
|
}
|
}
|
|
return s1/s2;
|
}
|
|
/// <summary>
|
/// Differentiate at point t. NOT SUPPORTED.
|
/// </summary>
|
/// <param name="t">Point t to interpolate at.</param>
|
/// <returns>Interpolated first derivative at point t.</returns>
|
double IInterpolation.Differentiate(double t)
|
{
|
throw new NotSupportedException();
|
}
|
|
/// <summary>
|
/// Differentiate twice at point t. NOT SUPPORTED.
|
/// </summary>
|
/// <param name="t">Point t to interpolate at.</param>
|
/// <returns>Interpolated second derivative at point t.</returns>
|
double IInterpolation.Differentiate2(double t)
|
{
|
throw new NotSupportedException();
|
}
|
|
/// <summary>
|
/// Indefinite integral at point t. NOT SUPPORTED.
|
/// </summary>
|
/// <param name="t">Point t to integrate at.</param>
|
double IInterpolation.Integrate(double t)
|
{
|
throw new NotSupportedException();
|
}
|
|
/// <summary>
|
/// Definite integral between points a and b. NOT SUPPORTED.
|
/// </summary>
|
/// <param name="a">Left bound of the integration interval [a,b].</param>
|
/// <param name="b">Right bound of the integration interval [a,b].</param>
|
double IInterpolation.Integrate(double a, double b)
|
{
|
throw new NotSupportedException();
|
}
|
}
|
}
|