// <copyright file="LinearSpline.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2014 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using System.Linq;
|
|
namespace IStation.Numerics.Interpolation
|
{
|
/// <summary>
|
/// Piece-wise Linear Interpolation.
|
/// </summary>
|
/// <remarks>Supports both differentiation and integration.</remarks>
|
public class LinearSpline : IInterpolation
|
{
|
readonly double[] _x;
|
readonly double[] _c0;
|
readonly double[] _c1;
|
readonly Lazy<double[]> _indefiniteIntegral;
|
|
/// <param name="x">Sample points (N+1), sorted ascending</param>
|
/// <param name="c0">Sample values (N or N+1) at the corresponding points; intercept, zero order coefficients</param>
|
/// <param name="c1">Slopes (N) at the sample points (first order coefficients): N</param>
|
public LinearSpline(double[] x, double[] c0, double[] c1)
|
{
|
if ((x.Length != c0.Length + 1 && x.Length != c0.Length) || x.Length != c1.Length + 1)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
if (x.Length < 2)
|
{
|
throw new ArgumentException("The given array is too small. It must be at least 2 long.", nameof(x));
|
}
|
|
_x = x;
|
_c0 = c0;
|
_c1 = c1;
|
_indefiniteIntegral = new Lazy<double[]>(ComputeIndefiniteIntegral);
|
}
|
|
/// <summary>
|
/// Create a linear spline interpolation from a set of (x,y) value pairs, sorted ascendingly by x.
|
/// </summary>
|
public static LinearSpline InterpolateSorted(double[] x, double[] y)
|
{
|
if (x.Length != y.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
if (x.Length < 2)
|
{
|
throw new ArgumentException("The given array is too small. It must be at least 2 long.", nameof(x));
|
}
|
|
var c1 = new double[x.Length - 1];
|
for (int i = 0; i < c1.Length; i++)
|
{
|
c1[i] = (y[i + 1] - y[i])/(x[i + 1] - x[i]);
|
}
|
|
return new LinearSpline(x, y, c1);
|
}
|
|
/// <summary>
|
/// Create a linear spline interpolation from an unsorted set of (x,y) value pairs.
|
/// WARNING: Works in-place and can thus causes the data array to be reordered.
|
/// </summary>
|
public static LinearSpline InterpolateInplace(double[] x, double[] y)
|
{
|
if (x.Length != y.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
Sorting.Sort(x, y);
|
return InterpolateSorted(x, y);
|
}
|
|
/// <summary>
|
/// Create a linear spline interpolation from an unsorted set of (x,y) value pairs.
|
/// </summary>
|
public static LinearSpline Interpolate(IEnumerable<double> x, IEnumerable<double> y)
|
{
|
// note: we must make a copy, even if the input was arrays already
|
return InterpolateInplace(x.ToArray(), y.ToArray());
|
}
|
|
/// <summary>
|
/// Gets a value indicating whether the algorithm supports differentiation (interpolated derivative).
|
/// </summary>
|
bool IInterpolation.SupportsDifferentiation => true;
|
|
/// <summary>
|
/// Gets a value indicating whether the algorithm supports integration (interpolated quadrature).
|
/// </summary>
|
bool IInterpolation.SupportsIntegration => true;
|
|
/// <summary>
|
/// Interpolate at point t.
|
/// </summary>
|
/// <param name="t">Point t to interpolate at.</param>
|
/// <returns>Interpolated value x(t).</returns>
|
public double Interpolate(double t)
|
{
|
int k = LeftSegmentIndex(t);
|
return _c0[k] + (t - _x[k])*_c1[k];
|
}
|
|
/// <summary>
|
/// Differentiate at point t.
|
/// </summary>
|
/// <param name="t">Point t to interpolate at.</param>
|
/// <returns>Interpolated first derivative at point t.</returns>
|
public double Differentiate(double t)
|
{
|
int k = LeftSegmentIndex(t);
|
return _c1[k];
|
}
|
|
/// <summary>
|
/// Differentiate twice at point t.
|
/// </summary>
|
/// <param name="t">Point t to interpolate at.</param>
|
/// <returns>Interpolated second derivative at point t.</returns>
|
public double Differentiate2(double t)
|
{
|
return 0d;
|
}
|
|
/// <summary>
|
/// Indefinite integral at point t.
|
/// </summary>
|
/// <param name="t">Point t to integrate at.</param>
|
public double Integrate(double t)
|
{
|
int k = LeftSegmentIndex(t);
|
var x = t - _x[k];
|
return _indefiniteIntegral.Value[k] + x*(_c0[k] + x*_c1[k]/2);
|
}
|
|
/// <summary>
|
/// Definite integral between points a and b.
|
/// </summary>
|
/// <param name="a">Left bound of the integration interval [a,b].</param>
|
/// <param name="b">Right bound of the integration interval [a,b].</param>
|
public double Integrate(double a, double b)
|
{
|
return Integrate(b) - Integrate(a);
|
}
|
|
double[] ComputeIndefiniteIntegral()
|
{
|
var integral = new double[_c1.Length];
|
for (int i = 0; i < integral.Length - 1; i++)
|
{
|
double w = _x[i + 1] - _x[i];
|
integral[i + 1] = integral[i] + w*(_c0[i] + w*_c1[i]/2);
|
}
|
|
return integral;
|
}
|
|
/// <summary>
|
/// Find the index of the greatest sample point smaller than t,
|
/// or the left index of the closest segment for extrapolation.
|
/// </summary>
|
int LeftSegmentIndex(double t)
|
{
|
int index = Array.BinarySearch(_x, t);
|
if (index < 0)
|
{
|
index = ~index - 1;
|
}
|
|
return Math.Min(Math.Max(index, 0), _x.Length - 2);
|
}
|
}
|
}
|