// <copyright file="StepInterpolation.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2014 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using System.Linq;
|
|
namespace IStation.Numerics.Interpolation
|
{
|
/// <summary>
|
/// A step function where the start of each segment is included, and the last segment is open-ended.
|
/// Segment i is [x_i, x_i+1) for i < N, or [x_i, infinity] for i = N.
|
/// The domain of the function is all real numbers, such that y = 0 where x <.
|
/// </summary>
|
/// <remarks>Supports both differentiation and integration.</remarks>
|
public class StepInterpolation : IInterpolation
|
{
|
readonly double[] _x;
|
readonly double[] _y;
|
readonly Lazy<double[]> _indefiniteIntegral;
|
|
/// <param name="x">Sample points (N), sorted ascending</param>
|
/// <param name="sy">Samples values (N) of each segment starting at the corresponding sample point.</param>
|
public StepInterpolation(double[] x, double[] sy)
|
{
|
if (x.Length != sy.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
if (x.Length < 1)
|
{
|
throw new ArgumentException("The given array is too small. It must be at least 1 long.", nameof(x));
|
}
|
|
_x = x;
|
_y = sy;
|
_indefiniteIntegral = new Lazy<double[]>(ComputeIndefiniteIntegral);
|
}
|
|
/// <summary>
|
/// Create a linear spline interpolation from a set of (x,y) value pairs, sorted ascendingly by x.
|
/// </summary>
|
public static StepInterpolation InterpolateSorted(double[] x, double[] y)
|
{
|
return new StepInterpolation(x, y);
|
}
|
|
/// <summary>
|
/// Create a linear spline interpolation from an unsorted set of (x,y) value pairs.
|
/// WARNING: Works in-place and can thus causes the data array to be reordered.
|
/// </summary>
|
public static StepInterpolation InterpolateInplace(double[] x, double[] y)
|
{
|
if (x.Length != y.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
Sorting.Sort(x, y);
|
return InterpolateSorted(x, y);
|
}
|
|
/// <summary>
|
/// Create a linear spline interpolation from an unsorted set of (x,y) value pairs.
|
/// </summary>
|
public static StepInterpolation Interpolate(IEnumerable<double> x, IEnumerable<double> y)
|
{
|
// note: we must make a copy, even if the input was arrays already
|
return InterpolateInplace(x.ToArray(), y.ToArray());
|
}
|
|
bool IInterpolation.SupportsDifferentiation => true;
|
|
bool IInterpolation.SupportsIntegration => true;
|
|
/// <summary>
|
/// Interpolate at point t.
|
/// </summary>
|
/// <param name="t">Point t to interpolate at.</param>
|
/// <returns>Interpolated value x(t).</returns>
|
public double Interpolate(double t)
|
{
|
if (t < _x[0])
|
{
|
return 0.0;
|
}
|
|
int k = LeftBracketIndex(t);
|
return _y[k];
|
}
|
|
/// <summary>
|
/// Differentiate at point t.
|
/// </summary>
|
/// <param name="t">Point t to interpolate at.</param>
|
/// <returns>Interpolated first derivative at point t.</returns>
|
public double Differentiate(double t)
|
{
|
int index = Array.BinarySearch(_x, t);
|
if (index >= 0)
|
{
|
return double.NaN;
|
}
|
|
return 0d;
|
}
|
|
/// <summary>
|
/// Differentiate twice at point t.
|
/// </summary>
|
/// <param name="t">Point t to interpolate at.</param>
|
/// <returns>Interpolated second derivative at point t.</returns>
|
public double Differentiate2(double t)
|
{
|
return Differentiate(t);
|
}
|
|
/// <summary>
|
/// Indefinite integral at point t.
|
/// </summary>
|
/// <param name="t">Point t to integrate at.</param>
|
public double Integrate(double t)
|
{
|
if (t <= _x[0])
|
{
|
return 0.0;
|
}
|
|
int k = LeftBracketIndex(t);
|
var x = t - _x[k];
|
return _indefiniteIntegral.Value[k] + x*_y[k];
|
}
|
|
/// <summary>
|
/// Definite integral between points a and b.
|
/// </summary>
|
/// <param name="a">Left bound of the integration interval [a,b].</param>
|
/// <param name="b">Right bound of the integration interval [a,b].</param>
|
public double Integrate(double a, double b)
|
{
|
return Integrate(b) - Integrate(a);
|
}
|
|
double[] ComputeIndefiniteIntegral()
|
{
|
var integral = new double[_x.Length];
|
for (int i = 0; i < integral.Length - 1; i++)
|
{
|
integral[i + 1] = integral[i] + (_x[i + 1] - _x[i])*_y[i];
|
}
|
|
return integral;
|
}
|
|
/// <summary>
|
/// Find the index of the greatest sample point smaller than t.
|
/// </summary>
|
int LeftBracketIndex(double t)
|
{
|
int index = Array.BinarySearch(_x, t);
|
return index >= 0 ? index : ~index - 1;
|
}
|
}
|
}
|