// <copyright file="Broyden.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2020 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using IStation.Numerics.LinearAlgebra;
|
using IStation.Numerics.LinearAlgebra.Double;
|
|
namespace IStation.Numerics.RootFinding
|
{
|
/// <summary>
|
/// Algorithm by Broyden.
|
/// Implementation inspired by Press, Teukolsky, Vetterling, and Flannery, "Numerical Recipes in C", 2nd edition, Cambridge University Press
|
/// </summary>
|
public static class Broyden
|
{
|
/// <summary>Find a solution of the equation f(x)=0.</summary>
|
/// <param name="f">The function to find roots from.</param>
|
/// <param name="initialGuess">Initial guess of the root.</param>
|
/// <param name="accuracy">Desired accuracy. The root will be refined until the accuracy or the maximum number of iterations is reached. Default 1e-8. Must be greater than 0.</param>
|
/// <param name="maxIterations">Maximum number of iterations. Default 100.</param>
|
/// <param name="jacobianStepSize">Relative step size for calculating the Jacobian matrix at first step. Default 1.0e-4</param>
|
/// <returns>Returns the root with the specified accuracy.</returns>
|
/// <exception cref="NonConvergenceException"></exception>
|
public static double[] FindRoot(Func<double[], double[]> f, double[] initialGuess, double accuracy = 1e-8, int maxIterations = 100, double jacobianStepSize = 1.0e-4)
|
{
|
double[] root;
|
if (TryFindRootWithJacobianStep(f, initialGuess, accuracy, maxIterations, jacobianStepSize, out root))
|
{
|
return root;
|
}
|
|
throw new NonConvergenceException("The algorithm has failed, exceeded the number of iterations allowed or there is no root within the provided bounds.");
|
}
|
|
/// <summary>Find a solution of the equation f(x)=0.</summary>
|
/// <param name="f">The function to find roots from.</param>
|
/// <param name="initialGuess">Initial guess of the root.</param>
|
/// <param name="accuracy">Desired accuracy. The root will be refined until the accuracy or the maximum number of iterations is reached. Must be greater than 0.</param>
|
/// <param name="maxIterations">Maximum number of iterations. Usually 100.</param>
|
/// <param name="jacobianStepSize">Relative step size for calculating the Jacobian matrix at first step.</param>
|
/// <param name="root">The root that was found, if any. Undefined if the function returns false.</param>
|
/// <returns>True if a root with the specified accuracy was found, else false.</returns>
|
public static bool TryFindRootWithJacobianStep(Func<double[], double[]> f, double[] initialGuess, double accuracy, int maxIterations, double jacobianStepSize, out double[] root)
|
{
|
if (accuracy <= 0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(accuracy), "Must be greater than zero.");
|
}
|
|
var x = new DenseVector(initialGuess);
|
|
double[] y0 = f(initialGuess);
|
var y = new DenseVector(y0);
|
double g = y.L2Norm();
|
|
Matrix<double> B = CalculateApproximateJacobian(f, initialGuess, y0, jacobianStepSize);
|
|
try
|
{
|
for (int i = 0; i <= maxIterations; i++)
|
{
|
var dx = (DenseVector) (-B.LU().Solve(y));
|
var xnew = x + dx;
|
var ynew = new DenseVector(f(xnew.Values));
|
double gnew = ynew.L2Norm();
|
|
if (gnew > g)
|
{
|
double g2 = g*g;
|
double scale = g2/(g2 + gnew*gnew);
|
if (scale == 0.0)
|
{
|
scale = 1.0e-4;
|
}
|
|
dx = scale*dx;
|
xnew = x + dx;
|
ynew = new DenseVector(f(xnew.Values));
|
gnew = ynew.L2Norm();
|
}
|
|
if (gnew < accuracy)
|
{
|
root = xnew.Values;
|
return true;
|
}
|
|
// update Jacobian B
|
DenseVector dF = ynew - y;
|
Matrix<double> dB = (dF - B.Multiply(dx)).ToColumnMatrix() * dx.Multiply(1.0 / Math.Pow(dx.L2Norm(), 2)).ToRowMatrix();
|
B = B + dB;
|
|
x = xnew;
|
y = ynew;
|
g = gnew;
|
}
|
}
|
catch (InvalidParameterException)
|
{
|
root = null;
|
return false;
|
}
|
|
root = null;
|
return false;
|
}
|
/// <summary>Find a solution of the equation f(x)=0.</summary>
|
/// <param name="f">The function to find roots from.</param>
|
/// <param name="initialGuess">Initial guess of the root.</param>
|
/// <param name="accuracy">Desired accuracy. The root will be refined until the accuracy or the maximum number of iterations is reached. Must be greater than 0.</param>
|
/// <param name="maxIterations">Maximum number of iterations. Usually 100.</param>
|
/// <param name="root">The root that was found, if any. Undefined if the function returns false.</param>
|
/// <returns>True if a root with the specified accuracy was found, else false.</returns>
|
public static bool TryFindRoot(Func<double[], double[]> f, double[] initialGuess, double accuracy, int maxIterations, out double[] root)
|
{
|
return TryFindRootWithJacobianStep(f, initialGuess, accuracy, maxIterations, 1.0e-4, out root);
|
}
|
|
/// <summary>
|
/// Helper method to calculate an approximation of the Jacobian.
|
/// </summary>
|
/// <param name="f">The function.</param>
|
/// <param name="x0">The argument (initial guess).</param>
|
/// <param name="y0">The result (of initial guess).</param>
|
/// <param name="jacobianStepSize">Relative step size for calculating the Jacobian.</param>
|
static Matrix<double> CalculateApproximateJacobian(Func<double[], double[]> f, double[] x0, double[] y0, double jacobianStepSize)
|
{
|
int dim = x0.Length;
|
var B = new DenseMatrix(dim);
|
|
var x = new double[dim];
|
Array.Copy(x0, 0, x, 0, dim);
|
|
for (int j = 0; j < dim; j++)
|
{
|
double h = (1.0+Math.Abs(x0[j]))*jacobianStepSize;
|
|
var xj = x[j];
|
x[j] = xj + h;
|
double[] y = f(x);
|
x[j] = xj;
|
|
for (int i = 0; i < dim; i++)
|
{
|
B.At(i, j, (y[i] - y0[i])/h);
|
}
|
}
|
|
return B;
|
}
|
}
|
}
|