// <copyright file="RobustNewtonRaphson.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2020 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
|
namespace IStation.Numerics.RootFinding
|
{
|
/// <summary>
|
/// Robust Newton-Raphson root-finding algorithm that falls back to bisection when overshooting or converging too slow, or to subdivision on lacking bracketing.
|
/// </summary>
|
/// <seealso cref="NewtonRaphson"/>
|
public static class RobustNewtonRaphson
|
{
|
/// <summary>Find a solution of the equation f(x)=0.</summary>
|
/// <param name="f">The function to find roots from.</param>
|
/// <param name="df">The first derivative of the function to find roots from.</param>
|
/// <param name="lowerBound">The low value of the range where the root is supposed to be.</param>
|
/// <param name="upperBound">The high value of the range where the root is supposed to be.</param>
|
/// <param name="accuracy">Desired accuracy. The root will be refined until the accuracy or the maximum number of iterations is reached. Default 1e-8. Must be greater than 0.</param>
|
/// <param name="maxIterations">Maximum number of iterations. Default 100.</param>
|
/// <param name="subdivision">How many parts an interval should be split into for zero crossing scanning in case of lacking bracketing. Default 20.</param>
|
/// <returns>Returns the root with the specified accuracy.</returns>
|
/// <exception cref="NonConvergenceException"></exception>
|
public static double FindRoot(Func<double, double> f, Func<double, double> df, double lowerBound, double upperBound, double accuracy = 1e-8, int maxIterations = 100, int subdivision = 20)
|
{
|
double root;
|
if (TryFindRoot(f, df, lowerBound, upperBound, accuracy, maxIterations, subdivision, out root))
|
{
|
return root;
|
}
|
|
throw new NonConvergenceException("The algorithm has failed, exceeded the number of iterations allowed or there is no root within the provided bounds.");
|
}
|
|
/// <summary>Find a solution of the equation f(x)=0.</summary>
|
/// <param name="f">The function to find roots from.</param>
|
/// <param name="df">The first derivative of the function to find roots from.</param>
|
/// <param name="lowerBound">The low value of the range where the root is supposed to be.</param>
|
/// <param name="upperBound">The high value of the range where the root is supposed to be.</param>
|
/// <param name="accuracy">Desired accuracy. The root will be refined until the accuracy or the maximum number of iterations is reached. Example: 1e-14. Must be greater than 0.</param>
|
/// <param name="maxIterations">Maximum number of iterations. Example: 100.</param>
|
/// <param name="subdivision">How many parts an interval should be split into for zero crossing scanning in case of lacking bracketing. Example: 20.</param>
|
/// <param name="root">The root that was found, if any. Undefined if the function returns false.</param>
|
/// <returns>True if a root with the specified accuracy was found, else false.</returns>
|
public static bool TryFindRoot(Func<double, double> f, Func<double, double> df, double lowerBound, double upperBound, double accuracy, int maxIterations, int subdivision, out double root)
|
{
|
if (accuracy <= 0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(accuracy), "Must be greater than zero.");
|
}
|
|
double fmin = f(lowerBound);
|
double fmax = f(upperBound);
|
|
if (Math.Abs(fmin) < accuracy)
|
{
|
root = lowerBound;
|
return true;
|
}
|
|
if (Math.Abs(fmax) < accuracy)
|
{
|
root = upperBound;
|
return true;
|
}
|
|
root = 0.5*(lowerBound + upperBound);
|
double fx = f(root);
|
double lastStep = Math.Abs(upperBound - lowerBound);
|
for (int i = 0; i < maxIterations; i++)
|
{
|
double dfx = df(root);
|
|
// Netwon-Raphson step
|
double step = fx/dfx;
|
root -= step;
|
|
if (Math.Abs(step) < accuracy && Math.Abs(fx) < accuracy)
|
{
|
return true;
|
}
|
|
bool overshoot = root > upperBound, undershoot = root < lowerBound;
|
if (overshoot || undershoot || Math.Abs(2*fx) > Math.Abs(lastStep*dfx))
|
{
|
// Newton-Raphson step failed
|
|
// If same signs, try subdivision to scan for zero crossing intervals
|
if (Math.Sign(fmin) == Math.Sign(fmax) && TryScanForCrossingsWithRoots(f, df, lowerBound, upperBound, accuracy, maxIterations - i - 1, subdivision, out root))
|
{
|
return true;
|
}
|
|
// Bisection
|
root = 0.5*(upperBound + lowerBound);
|
fx = f(root);
|
lastStep = 0.5*Math.Abs(upperBound - lowerBound);
|
if (Math.Sign(fx) == Math.Sign(fmin))
|
{
|
lowerBound = root;
|
fmin = fx;
|
if (overshoot)
|
{
|
root = upperBound;
|
fx = fmax;
|
}
|
}
|
else
|
{
|
upperBound = root;
|
fmax = fx;
|
if (undershoot)
|
{
|
root = lowerBound;
|
fx = fmin;
|
}
|
}
|
|
continue;
|
}
|
|
// Evaluation
|
fx = f(root);
|
lastStep = step;
|
|
// Update bounds
|
if (Math.Sign(fx) != Math.Sign(fmin))
|
{
|
upperBound = root;
|
fmax = fx;
|
}
|
else if (Math.Sign(fx) != Math.Sign(fmax))
|
{
|
lowerBound = root;
|
fmin = fx;
|
}
|
else if (Math.Sign(fmin) != Math.Sign(fmax) && Math.Abs(fx) < accuracy)
|
{
|
return true;
|
}
|
}
|
|
return false;
|
}
|
|
static bool TryScanForCrossingsWithRoots(Func<double, double> f, Func<double, double> df, double lowerBound, double upperBound, double accuracy, int maxIterations, int subdivision, out double root)
|
{
|
var zeroCrossings = ZeroCrossingBracketing.FindIntervalsWithin(f, lowerBound, upperBound, subdivision);
|
foreach (Tuple<double, double> bounds in zeroCrossings)
|
{
|
if (TryFindRoot(f, df, bounds.Item1, bounds.Item2, accuracy, maxIterations, subdivision, out root))
|
{
|
return true;
|
}
|
}
|
|
root = double.NaN;
|
return false;
|
}
|
}
|
}
|