// <copyright file="MCMCDiagonistics.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2010 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using System.Linq;
|
|
namespace IStation.Numerics.Statistics.Mcmc
|
{
|
/// <summary>
|
/// Provides utilities to analysis the convergence of a set of samples from
|
/// a <seealso cref="McmcSampler{T}"/>.
|
/// </summary>
|
public static class MCMCDiagnostics
|
{
|
/// <summary>
|
/// Computes the auto correlations of a series evaluated by a function f.
|
/// </summary>
|
/// <param name="series">The series for computing the auto correlation.</param>
|
/// <param name="lag">The lag in the series</param>
|
/// <param name="f">The function used to evaluate the series.</param>
|
/// <returns>The auto correlation.</returns>
|
/// <exception cref="ArgumentOutOfRangeException">Throws if lag is zero or if lag is
|
/// greater than or equal to the length of Series.</exception>
|
public static double ACF<T>(IEnumerable<T> series, int lag, Func<T,double> f)
|
{
|
if (lag < 0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(lag), "Lag must be positive");
|
}
|
|
int length = series.Count();
|
if (lag >= length)
|
{
|
throw new ArgumentOutOfRangeException(nameof(lag), "Lag must be smaller than the sample size");
|
}
|
|
var transformedSeries = series.Select(f);
|
|
var enumerable = transformedSeries as double[] ?? transformedSeries.ToArray();
|
var firstSeries = enumerable.Take(length-lag);
|
var secondSeries = enumerable.Skip(lag);
|
|
return Correlation.Pearson(firstSeries, secondSeries);
|
}
|
|
/// <summary>
|
/// Computes the effective size of the sample when evaluated by a function f.
|
/// </summary>
|
/// <param name="series">The samples.</param>
|
/// <param name="f">The function use for evaluating the series.</param>
|
/// <returns>The effective size when auto correlation is taken into account.</returns>
|
public static double EffectiveSize<T>(IEnumerable<T> series, Func<T,double> f)
|
{
|
int length = series.Count();
|
double rho = ACF(series, 1, f);
|
return ((1 - rho) / (1 + rho)) * length;
|
}
|
}
|
}
|