// <copyright file="StudentT.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2014 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using IStation.Numerics.Random;
|
using IStation.Numerics.RootFinding;
|
|
namespace IStation.Numerics.Distributions
|
{
|
/// <summary>
|
/// Continuous Univariate Student's T-distribution.
|
/// Implements the univariate Student t-distribution. For details about this
|
/// distribution, see
|
/// <a href="http://en.wikipedia.org/wiki/Student%27s_t-distribution">
|
/// Wikipedia - Student's t-distribution</a>.
|
/// </summary>
|
/// <remarks><para>We use a slightly generalized version (compared to
|
/// Wikipedia) of the Student t-distribution. Namely, one which also
|
/// parameterizes the location and scale. See the book "Bayesian Data
|
/// Analysis" by Gelman et al. for more details.</para>
|
/// <para>The density of the Student t-distribution p(x|mu,scale,dof) =
|
/// Gamma((dof+1)/2) (1 + (x - mu)^2 / (scale * scale * dof))^(-(dof+1)/2) /
|
/// (Gamma(dof/2)*Sqrt(dof*pi*scale)).</para>
|
/// <para>The distribution will use the <see cref="System.Random"/> by
|
/// default. Users can get/set the random number generator by using the
|
/// <see cref="RandomSource"/> property.</para>
|
/// <para>The statistics classes will check all the incoming parameters
|
/// whether they are in the allowed range. This might involve heavy
|
/// computation. Optionally, by setting Control.CheckDistributionParameters
|
/// to <c>false</c>, all parameter checks can be turned off.</para></remarks>
|
public class StudentT : IContinuousDistribution
|
{
|
System.Random _random;
|
|
readonly double _location;
|
readonly double _scale;
|
readonly double _freedom;
|
|
/// <summary>
|
/// Initializes a new instance of the StudentT class. This is a Student t-distribution with location 0.0
|
/// scale 1.0 and degrees of freedom 1.
|
/// </summary>
|
public StudentT()
|
{
|
_random = SystemRandomSource.Default;
|
_location = 0.0;
|
_scale = 1.0;
|
_freedom = 1.0;
|
}
|
|
/// <summary>
|
/// Initializes a new instance of the StudentT class with a particular location, scale and degrees of
|
/// freedom.
|
/// </summary>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="freedom">The degrees of freedom (ν) for the distribution. Range: ν > 0.</param>
|
public StudentT(double location, double scale, double freedom)
|
{
|
if (!IsValidParameterSet(location, scale, freedom))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = SystemRandomSource.Default;
|
_location = location;
|
_scale = scale;
|
_freedom = freedom;
|
}
|
|
/// <summary>
|
/// Initializes a new instance of the StudentT class with a particular location, scale and degrees of
|
/// freedom.
|
/// </summary>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="freedom">The degrees of freedom (ν) for the distribution. Range: ν > 0.</param>
|
/// <param name="randomSource">The random number generator which is used to draw random samples.</param>
|
public StudentT(double location, double scale, double freedom, System.Random randomSource)
|
{
|
if (!IsValidParameterSet(location, scale, freedom))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = randomSource ?? SystemRandomSource.Default;
|
_location = location;
|
_scale = scale;
|
_freedom = freedom;
|
}
|
|
/// <summary>
|
/// A string representation of the distribution.
|
/// </summary>
|
/// <returns>a string representation of the distribution.</returns>
|
public override string ToString()
|
{
|
return $"StudentT(μ = {_location}, σ = {_scale}, ν = {_freedom})";
|
}
|
|
/// <summary>
|
/// Tests whether the provided values are valid parameters for this distribution.
|
/// </summary>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="freedom">The degrees of freedom (ν) for the distribution. Range: ν > 0.</param>
|
public static bool IsValidParameterSet(double location, double scale, double freedom)
|
{
|
return scale > 0.0 && freedom > 0.0 && !double.IsNaN(location);
|
}
|
|
/// <summary>
|
/// Gets the location (μ) of the Student t-distribution.
|
/// </summary>
|
public double Location => _location;
|
|
/// <summary>
|
/// Gets the scale (σ) of the Student t-distribution. Range: σ > 0.
|
/// </summary>
|
public double Scale => _scale;
|
|
/// <summary>
|
/// Gets the degrees of freedom (ν) of the Student t-distribution. Range: ν > 0.
|
/// </summary>
|
public double DegreesOfFreedom => _freedom;
|
|
/// <summary>
|
/// Gets or sets the random number generator which is used to draw random samples.
|
/// </summary>
|
public System.Random RandomSource
|
{
|
get => _random;
|
set => _random = value ?? SystemRandomSource.Default;
|
}
|
|
/// <summary>
|
/// Gets the mean of the Student t-distribution.
|
/// </summary>
|
public double Mean => _freedom > 1.0 ? _location : double.NaN;
|
|
/// <summary>
|
/// Gets the variance of the Student t-distribution.
|
/// </summary>
|
public double Variance
|
{
|
get
|
{
|
if (double.IsPositiveInfinity(_freedom))
|
{
|
return _scale*_scale;
|
}
|
|
if (_freedom > 2.0)
|
{
|
return _freedom*_scale*_scale/(_freedom - 2.0);
|
}
|
|
return _freedom > 1.0 ? double.PositiveInfinity : double.NaN;
|
}
|
}
|
|
/// <summary>
|
/// Gets the standard deviation of the Student t-distribution.
|
/// </summary>
|
public double StdDev
|
{
|
get
|
{
|
if (double.IsPositiveInfinity(_freedom))
|
{
|
return Math.Sqrt(_scale*_scale);
|
}
|
|
if (_freedom > 2.0)
|
{
|
return Math.Sqrt(_freedom*_scale*_scale/(_freedom - 2.0));
|
}
|
|
return _freedom > 1.0 ? double.PositiveInfinity : double.NaN;
|
}
|
}
|
|
/// <summary>
|
/// Gets the entropy of the Student t-distribution.
|
/// </summary>
|
public double Entropy
|
{
|
get
|
{
|
if (_location != 0 || _scale != 1.0)
|
{
|
throw new NotSupportedException();
|
}
|
|
return (((_freedom + 1.0)/2.0)*(SpecialFunctions.DiGamma((1.0 + _freedom)/2.0) - SpecialFunctions.DiGamma(_freedom/2.0)))
|
+ Math.Log(Math.Sqrt(_freedom)*SpecialFunctions.Beta(_freedom/2.0, 1.0/2.0));
|
}
|
}
|
|
/// <summary>
|
/// Gets the skewness of the Student t-distribution.
|
/// </summary>
|
public double Skewness
|
{
|
get
|
{
|
if (_freedom <= 3)
|
{
|
throw new NotSupportedException();
|
}
|
|
return 0.0;
|
}
|
}
|
|
/// <summary>
|
/// Gets the mode of the Student t-distribution.
|
/// </summary>
|
public double Mode => _location;
|
|
/// <summary>
|
/// Gets the median of the Student t-distribution.
|
/// </summary>
|
public double Median => _location;
|
|
/// <summary>
|
/// Gets the minimum of the Student t-distribution.
|
/// </summary>
|
public double Minimum => double.NegativeInfinity;
|
|
/// <summary>
|
/// Gets the maximum of the Student t-distribution.
|
/// </summary>
|
public double Maximum => double.PositiveInfinity;
|
|
/// <summary>
|
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
|
/// </summary>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <returns>the density at <paramref name="x"/>.</returns>
|
public double Density(double x)
|
{
|
return PDF(_location, _scale, _freedom, x);
|
}
|
|
/// <summary>
|
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the log density.</param>
|
/// <returns>the log density at <paramref name="x"/>.</returns>
|
public double DensityLn(double x)
|
{
|
return PDFLn(_location, _scale, _freedom, x);
|
}
|
|
/// <summary>
|
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
|
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
|
public double CumulativeDistribution(double x)
|
{
|
return CDF(_location, _scale, _freedom, x);
|
}
|
|
/// <summary>
|
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
|
/// at the given probability. This is also known as the quantile or percent point function.
|
/// </summary>
|
/// <param name="p">The location at which to compute the inverse cumulative density.</param>
|
/// <returns>the inverse cumulative density at <paramref name="p"/>.</returns>
|
/// <seealso cref="InvCDF"/>
|
/// <remarks>WARNING: currently not an explicit implementation, hence slow and unreliable.</remarks>
|
public double InverseCumulativeDistribution(double p)
|
{
|
return InvCDF(_location, _scale, _freedom, p);
|
}
|
|
/// <summary>
|
/// Samples student-t distributed random variables.
|
/// </summary>
|
/// <remarks>The algorithm is method 2 in section 5, chapter 9
|
/// in L. Devroye's "Non-Uniform Random Variate Generation"</remarks>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="freedom">The degrees of freedom (ν) for the distribution. Range: ν > 0.</param>
|
/// <returns>a random number from the standard student-t distribution.</returns>
|
static double SampleUnchecked(System.Random rnd, double location, double scale, double freedom)
|
{
|
var gamma = Gamma.SampleUnchecked(rnd, 0.5*freedom, 0.5);
|
return Normal.Sample(rnd, location, scale*Math.Sqrt(freedom/gamma));
|
}
|
|
static void SamplesUnchecked(System.Random rnd, double[] values, double location, double scale, double freedom)
|
{
|
Gamma.SamplesUnchecked(rnd, values, 0.5*freedom, 0.5);
|
for (int i = 0; i < values.Length; i++)
|
{
|
values[i] = Normal.Sample(rnd, location, scale*Math.Sqrt(freedom/values[i]));
|
}
|
}
|
|
static IEnumerable<double> SamplesUnchecked(System.Random rnd, double location, double scale, double freedom)
|
{
|
while (true)
|
{
|
yield return SampleUnchecked(rnd, location, scale, freedom);
|
}
|
}
|
|
/// <summary>
|
/// Generates a sample from the Student t-distribution.
|
/// </summary>
|
/// <returns>a sample from the distribution.</returns>
|
public double Sample()
|
{
|
return SampleUnchecked(_random, _location, _scale, _freedom);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
public void Samples(double[] values)
|
{
|
SamplesUnchecked(_random, values, _location, _scale, _freedom);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the Student t-distribution.
|
/// </summary>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public IEnumerable<double> Samples()
|
{
|
return SamplesUnchecked(_random, _location, _scale, _freedom);
|
}
|
|
/// <summary>
|
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
|
/// </summary>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="freedom">The degrees of freedom (ν) for the distribution. Range: ν > 0.</param>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <returns>the density at <paramref name="x"/>.</returns>
|
/// <seealso cref="Density"/>
|
public static double PDF(double location, double scale, double freedom, double x)
|
{
|
if (scale <= 0.0 || freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
// TODO JVG we can probably do a better job for Cauchy special case
|
if (freedom >= 1e+8d)
|
{
|
return Normal.PDF(location, scale, x);
|
}
|
|
var d = (x - location)/scale;
|
return Math.Exp(SpecialFunctions.GammaLn((freedom + 1.0)/2.0) - SpecialFunctions.GammaLn(freedom/2.0))
|
*Math.Pow(1.0 + (d*d/freedom), -0.5*(freedom + 1.0))
|
/Math.Sqrt(freedom*Math.PI)
|
/scale;
|
}
|
|
/// <summary>
|
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
|
/// </summary>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="freedom">The degrees of freedom (ν) for the distribution. Range: ν > 0.</param>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <returns>the log density at <paramref name="x"/>.</returns>
|
/// <seealso cref="DensityLn"/>
|
public static double PDFLn(double location, double scale, double freedom, double x)
|
{
|
if (scale <= 0.0 || freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
// TODO JVG we can probably do a better job for Cauchy special case
|
if (freedom >= 1e+8d)
|
{
|
return Normal.PDFLn(location, scale, x);
|
}
|
|
var d = (x - location)/scale;
|
return SpecialFunctions.GammaLn((freedom + 1.0)/2.0)
|
- (0.5*((freedom + 1.0)*Math.Log(1.0 + (d*d/freedom))))
|
- SpecialFunctions.GammaLn(freedom/2.0)
|
- (0.5*Math.Log(freedom*Math.PI)) - Math.Log(scale);
|
}
|
|
/// <summary>
|
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="freedom">The degrees of freedom (ν) for the distribution. Range: ν > 0.</param>
|
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
|
/// <seealso cref="CumulativeDistribution"/>
|
public static double CDF(double location, double scale, double freedom, double x)
|
{
|
if (scale <= 0.0 || freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
// TODO JVG we can probably do a better job for Cauchy special case
|
if (double.IsPositiveInfinity(freedom))
|
{
|
return Normal.CDF(location, scale, x);
|
}
|
|
var k = (x - location)/scale;
|
var h = freedom/(freedom + (k*k));
|
var ib = 0.5*SpecialFunctions.BetaRegularized(freedom/2.0, 0.5, h);
|
return x <= location ? ib : 1.0 - ib;
|
}
|
|
/// <summary>
|
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
|
/// at the given probability. This is also known as the quantile or percent point function.
|
/// </summary>
|
/// <param name="p">The location at which to compute the inverse cumulative density.</param>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="freedom">The degrees of freedom (ν) for the distribution. Range: ν > 0.</param>
|
/// <returns>the inverse cumulative density at <paramref name="p"/>.</returns>
|
/// <seealso cref="InverseCumulativeDistribution"/>
|
/// <remarks>WARNING: currently not an explicit implementation, hence slow and unreliable.</remarks>
|
public static double InvCDF(double location, double scale, double freedom, double p)
|
{
|
if (scale <= 0.0 || freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
// TODO JVG we can probably do a better job for Cauchy special case
|
if (double.IsPositiveInfinity(freedom))
|
{
|
return Normal.InvCDF(location, scale, p);
|
}
|
|
if (p == 0.5d)
|
{
|
return location;
|
}
|
|
// TODO PERF: We must implement this explicitly instead of solving for CDF^-1
|
return Brent.FindRoot(x =>
|
{
|
var k = (x - location)/scale;
|
var h = freedom/(freedom + (k*k));
|
var ib = 0.5*SpecialFunctions.BetaRegularized(freedom/2.0, 0.5, h);
|
return x <= location ? ib - p : 1.0 - ib - p;
|
}, -800, 800, accuracy: 1e-12);
|
}
|
|
/// <summary>
|
/// Generates a sample from the Student t-distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="freedom">The degrees of freedom (ν) for the distribution. Range: ν > 0.</param>
|
/// <returns>a sample from the distribution.</returns>
|
public static double Sample(System.Random rnd, double location, double scale, double freedom)
|
{
|
if (scale <= 0.0 || freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SampleUnchecked(rnd, location, scale, freedom);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the Student t-distribution using the <i>Box-Muller</i> algorithm.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="freedom">The degrees of freedom (ν) for the distribution. Range: ν > 0.</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static IEnumerable<double> Samples(System.Random rnd, double location, double scale, double freedom)
|
{
|
if (scale <= 0.0 || freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SamplesUnchecked(rnd, location, scale, freedom);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="values">The array to fill with the samples.</param>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="freedom">The degrees of freedom (ν) for the distribution. Range: ν > 0.</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static void Samples(System.Random rnd, double[] values, double location, double scale, double freedom)
|
{
|
if (scale <= 0.0 || freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
SamplesUnchecked(rnd, values, location, scale, freedom);
|
}
|
|
/// <summary>
|
/// Generates a sample from the Student t-distribution.
|
/// </summary>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="freedom">The degrees of freedom (ν) for the distribution. Range: ν > 0.</param>
|
/// <returns>a sample from the distribution.</returns>
|
public static double Sample(double location, double scale, double freedom)
|
{
|
if (scale <= 0.0 || freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SampleUnchecked(SystemRandomSource.Default, location, scale, freedom);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the Student t-distribution using the <i>Box-Muller</i> algorithm.
|
/// </summary>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="freedom">The degrees of freedom (ν) for the distribution. Range: ν > 0.</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static IEnumerable<double> Samples(double location, double scale, double freedom)
|
{
|
if (scale <= 0.0 || freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SamplesUnchecked(SystemRandomSource.Default, location, scale, freedom);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
/// <param name="values">The array to fill with the samples.</param>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="freedom">The degrees of freedom (ν) for the distribution. Range: ν > 0.</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static void Samples(double[] values, double location, double scale, double freedom)
|
{
|
if (scale <= 0.0 || freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
SamplesUnchecked(SystemRandomSource.Default, values, location, scale, freedom);
|
}
|
}
|
}
|