// <copyright file="Euclid.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2014 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using System.Runtime.CompilerServices;
|
using BigInteger = System.Numerics.BigInteger;
|
|
namespace IStation.Numerics
|
{
|
/// <summary>
|
/// Integer number theory functions.
|
/// </summary>
|
public static class Euclid
|
{
|
/// <summary>
|
/// Canonical Modulus. The result has the sign of the divisor.
|
/// </summary>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static double Modulus(double dividend, double divisor)
|
{
|
return ((dividend%divisor) + divisor)%divisor;
|
}
|
|
/// <summary>
|
/// Canonical Modulus. The result has the sign of the divisor.
|
/// </summary>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static float Modulus(float dividend, float divisor)
|
{
|
return ((dividend%divisor) + divisor)%divisor;
|
}
|
|
/// <summary>
|
/// Canonical Modulus. The result has the sign of the divisor.
|
/// </summary>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static int Modulus(int dividend, int divisor)
|
{
|
return ((dividend%divisor) + divisor)%divisor;
|
}
|
|
/// <summary>
|
/// Canonical Modulus. The result has the sign of the divisor.
|
/// </summary>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static long Modulus(long dividend, long divisor)
|
{
|
return ((dividend%divisor) + divisor)%divisor;
|
}
|
|
/// <summary>
|
/// Canonical Modulus. The result has the sign of the divisor.
|
/// </summary>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static BigInteger Modulus(BigInteger dividend, BigInteger divisor)
|
{
|
return ((dividend%divisor) + divisor)%divisor;
|
}
|
|
/// <summary>
|
/// Remainder (% operator). The result has the sign of the dividend.
|
/// </summary>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static double Remainder(double dividend, double divisor)
|
{
|
return dividend%divisor;
|
}
|
|
/// <summary>
|
/// Remainder (% operator). The result has the sign of the dividend.
|
/// </summary>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static float Remainder(float dividend, float divisor)
|
{
|
return dividend%divisor;
|
}
|
|
/// <summary>
|
/// Remainder (% operator). The result has the sign of the dividend.
|
/// </summary>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static int Remainder(int dividend, int divisor)
|
{
|
return dividend%divisor;
|
}
|
|
/// <summary>
|
/// Remainder (% operator). The result has the sign of the dividend.
|
/// </summary>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static long Remainder(long dividend, long divisor)
|
{
|
return dividend%divisor;
|
}
|
|
/// <summary>
|
/// Remainder (% operator). The result has the sign of the dividend.
|
/// </summary>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static BigInteger Remainder(BigInteger dividend, BigInteger divisor)
|
{
|
return dividend%divisor;
|
}
|
|
/// <summary>
|
/// Find out whether the provided 32 bit integer is an even number.
|
/// </summary>
|
/// <param name="number">The number to very whether it's even.</param>
|
/// <returns>True if and only if it is an even number.</returns>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static bool IsEven(this int number)
|
{
|
return (number & 0x1) == 0x0;
|
}
|
|
/// <summary>
|
/// Find out whether the provided 64 bit integer is an even number.
|
/// </summary>
|
/// <param name="number">The number to very whether it's even.</param>
|
/// <returns>True if and only if it is an even number.</returns>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static bool IsEven(this long number)
|
{
|
return (number & 0x1) == 0x0;
|
}
|
|
/// <summary>
|
/// Find out whether the provided 32 bit integer is an odd number.
|
/// </summary>
|
/// <param name="number">The number to very whether it's odd.</param>
|
/// <returns>True if and only if it is an odd number.</returns>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static bool IsOdd(this int number)
|
{
|
return (number & 0x1) == 0x1;
|
}
|
|
/// <summary>
|
/// Find out whether the provided 64 bit integer is an odd number.
|
/// </summary>
|
/// <param name="number">The number to very whether it's odd.</param>
|
/// <returns>True if and only if it is an odd number.</returns>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static bool IsOdd(this long number)
|
{
|
return (number & 0x1) == 0x1;
|
}
|
|
/// <summary>
|
/// Find out whether the provided 32 bit integer is a perfect power of two.
|
/// </summary>
|
/// <param name="number">The number to very whether it's a power of two.</param>
|
/// <returns>True if and only if it is a power of two.</returns>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static bool IsPowerOfTwo(this int number)
|
{
|
return number > 0 && (number & (number - 1)) == 0x0;
|
}
|
|
/// <summary>
|
/// Find out whether the provided 64 bit integer is a perfect power of two.
|
/// </summary>
|
/// <param name="number">The number to very whether it's a power of two.</param>
|
/// <returns>True if and only if it is a power of two.</returns>
|
#if !NET40
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
#endif
|
public static bool IsPowerOfTwo(this long number)
|
{
|
return number > 0 && (number & (number - 1)) == 0x0;
|
}
|
|
/// <summary>
|
/// Find out whether the provided 32 bit integer is a perfect square, i.e. a square of an integer.
|
/// </summary>
|
/// <param name="number">The number to very whether it's a perfect square.</param>
|
/// <returns>True if and only if it is a perfect square.</returns>
|
public static bool IsPerfectSquare(this int number)
|
{
|
if (number < 0)
|
{
|
return false;
|
}
|
|
int lastHexDigit = number & 0xF;
|
if (lastHexDigit > 9)
|
{
|
return false; // return immediately in 6 cases out of 16.
|
}
|
|
if (lastHexDigit == 0 || lastHexDigit == 1 || lastHexDigit == 4 || lastHexDigit == 9)
|
{
|
int t = (int)Math.Floor(Math.Sqrt(number) + 0.5);
|
return (t * t) == number;
|
}
|
|
return false;
|
}
|
|
/// <summary>
|
/// Find out whether the provided 64 bit integer is a perfect square, i.e. a square of an integer.
|
/// </summary>
|
/// <param name="number">The number to very whether it's a perfect square.</param>
|
/// <returns>True if and only if it is a perfect square.</returns>
|
public static bool IsPerfectSquare(this long number)
|
{
|
if (number < 0)
|
{
|
return false;
|
}
|
|
int lastHexDigit = (int)(number & 0xF);
|
if (lastHexDigit > 9)
|
{
|
return false; // return immediately in 6 cases out of 16.
|
}
|
|
if (lastHexDigit == 0 || lastHexDigit == 1 || lastHexDigit == 4 || lastHexDigit == 9)
|
{
|
long t = (long)Math.Floor(Math.Sqrt(number) + 0.5);
|
return (t * t) == number;
|
}
|
|
return false;
|
}
|
|
/// <summary>
|
/// Raises 2 to the provided integer exponent (0 <= exponent < 31).
|
/// </summary>
|
/// <param name="exponent">The exponent to raise 2 up to.</param>
|
/// <returns>2 ^ exponent.</returns>
|
/// <exception cref="ArgumentOutOfRangeException"/>
|
public static int PowerOfTwo(this int exponent)
|
{
|
if (exponent < 0 || exponent >= 31)
|
{
|
throw new ArgumentOutOfRangeException(nameof(exponent));
|
}
|
|
return 1 << exponent;
|
}
|
|
/// <summary>
|
/// Raises 2 to the provided integer exponent (0 <= exponent < 63).
|
/// </summary>
|
/// <param name="exponent">The exponent to raise 2 up to.</param>
|
/// <returns>2 ^ exponent.</returns>
|
/// <exception cref="ArgumentOutOfRangeException"/>
|
public static long PowerOfTwo(this long exponent)
|
{
|
if (exponent < 0 || exponent >= 63)
|
{
|
throw new ArgumentOutOfRangeException(nameof(exponent));
|
}
|
|
return ((long)1) << (int)exponent;
|
}
|
|
/// <summary>
|
/// Evaluate the binary logarithm of an integer number.
|
/// </summary>
|
/// <remarks>Two-step method using a De Bruijn-like sequence table lookup.</remarks>
|
public static int Log2(this int number)
|
{
|
number |= number >> 1;
|
number |= number >> 2;
|
number |= number >> 4;
|
number |= number >> 8;
|
number |= number >> 16;
|
|
return MultiplyDeBruijnBitPosition[(uint)(number * 0x07C4ACDDU) >> 27];
|
}
|
|
static readonly int[] MultiplyDeBruijnBitPosition = new int[32]
|
{
|
0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30,
|
8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31
|
};
|
|
/// <summary>
|
/// Find the closest perfect power of two that is larger or equal to the provided
|
/// 32 bit integer.
|
/// </summary>
|
/// <param name="number">The number of which to find the closest upper power of two.</param>
|
/// <returns>A power of two.</returns>
|
/// <exception cref="ArgumentOutOfRangeException"/>
|
public static int CeilingToPowerOfTwo(this int number)
|
{
|
if (number == Int32.MinValue)
|
{
|
return 0;
|
}
|
|
const int maxPowerOfTwo = 0x40000000;
|
if (number > maxPowerOfTwo)
|
{
|
throw new ArgumentOutOfRangeException(nameof(number));
|
}
|
|
number--;
|
number |= number >> 1;
|
number |= number >> 2;
|
number |= number >> 4;
|
number |= number >> 8;
|
number |= number >> 16;
|
return number + 1;
|
}
|
|
/// <summary>
|
/// Find the closest perfect power of two that is larger or equal to the provided
|
/// 64 bit integer.
|
/// </summary>
|
/// <param name="number">The number of which to find the closest upper power of two.</param>
|
/// <returns>A power of two.</returns>
|
/// <exception cref="ArgumentOutOfRangeException"/>
|
public static long CeilingToPowerOfTwo(this long number)
|
{
|
if (number == Int64.MinValue)
|
{
|
return 0;
|
}
|
|
const long maxPowerOfTwo = 0x4000000000000000;
|
if (number > maxPowerOfTwo)
|
{
|
throw new ArgumentOutOfRangeException(nameof(number));
|
}
|
|
number--;
|
number |= number >> 1;
|
number |= number >> 2;
|
number |= number >> 4;
|
number |= number >> 8;
|
number |= number >> 16;
|
number |= number >> 32;
|
return number + 1;
|
}
|
|
/// <summary>
|
/// Returns the greatest common divisor (<c>gcd</c>) of two integers using Euclid's algorithm.
|
/// </summary>
|
/// <param name="a">First Integer: a.</param>
|
/// <param name="b">Second Integer: b.</param>
|
/// <returns>Greatest common divisor <c>gcd</c>(a,b)</returns>
|
public static long GreatestCommonDivisor(long a, long b)
|
{
|
while (b != 0)
|
{
|
var remainder = a%b;
|
a = b;
|
b = remainder;
|
}
|
|
return Math.Abs(a);
|
}
|
|
/// <summary>
|
/// Returns the greatest common divisor (<c>gcd</c>) of a set of integers using Euclid's
|
/// algorithm.
|
/// </summary>
|
/// <param name="integers">List of Integers.</param>
|
/// <returns>Greatest common divisor <c>gcd</c>(list of integers)</returns>
|
public static long GreatestCommonDivisor(IList<long> integers)
|
{
|
if (null == integers)
|
{
|
throw new ArgumentNullException(nameof(integers));
|
}
|
|
if (integers.Count == 0)
|
{
|
return 0;
|
}
|
|
var gcd = Math.Abs(integers[0]);
|
|
for (var i = 1; (i < integers.Count) && (gcd > 1); i++)
|
{
|
gcd = GreatestCommonDivisor(gcd, integers[i]);
|
}
|
|
return gcd;
|
}
|
|
/// <summary>
|
/// Returns the greatest common divisor (<c>gcd</c>) of a set of integers using Euclid's algorithm.
|
/// </summary>
|
/// <param name="integers">List of Integers.</param>
|
/// <returns>Greatest common divisor <c>gcd</c>(list of integers)</returns>
|
public static long GreatestCommonDivisor(params long[] integers)
|
{
|
return GreatestCommonDivisor((IList<long>)integers);
|
}
|
|
/// <summary>
|
/// Computes the extended greatest common divisor, such that a*x + b*y = <c>gcd</c>(a,b).
|
/// </summary>
|
/// <param name="a">First Integer: a.</param>
|
/// <param name="b">Second Integer: b.</param>
|
/// <param name="x">Resulting x, such that a*x + b*y = <c>gcd</c>(a,b).</param>
|
/// <param name="y">Resulting y, such that a*x + b*y = <c>gcd</c>(a,b)</param>
|
/// <returns>Greatest common divisor <c>gcd</c>(a,b)</returns>
|
/// <example>
|
/// <code>
|
/// long x,y,d;
|
/// d = Fn.GreatestCommonDivisor(45,18,out x, out y);
|
/// -> d == 9 && x == 1 && y == -2
|
/// </code>
|
/// The <c>gcd</c> of 45 and 18 is 9: 18 = 2*9, 45 = 5*9. 9 = 1*45 -2*18, therefore x=1 and y=-2.
|
/// </example>
|
public static long ExtendedGreatestCommonDivisor(long a, long b, out long x, out long y)
|
{
|
long mp = 1, np = 0, m = 0, n = 1;
|
|
while (b != 0)
|
{
|
long rem;
|
#if NETSTANDARD1_3
|
rem = a % b;
|
var quot = a / b;
|
#else
|
long quot = Math.DivRem(a, b, out rem);
|
#endif
|
a = b;
|
b = rem;
|
|
var tmp = m;
|
m = mp - (quot*m);
|
mp = tmp;
|
|
tmp = n;
|
n = np - (quot*n);
|
np = tmp;
|
}
|
|
if (a >= 0)
|
{
|
x = mp;
|
y = np;
|
return a;
|
}
|
|
x = -mp;
|
y = -np;
|
return -a;
|
}
|
|
/// <summary>
|
/// Returns the least common multiple (<c>lcm</c>) of two integers using Euclid's algorithm.
|
/// </summary>
|
/// <param name="a">First Integer: a.</param>
|
/// <param name="b">Second Integer: b.</param>
|
/// <returns>Least common multiple <c>lcm</c>(a,b)</returns>
|
public static long LeastCommonMultiple(long a, long b)
|
{
|
if ((a == 0) || (b == 0))
|
{
|
return 0;
|
}
|
|
return Math.Abs((a/GreatestCommonDivisor(a, b))*b);
|
}
|
|
/// <summary>
|
/// Returns the least common multiple (<c>lcm</c>) of a set of integers using Euclid's algorithm.
|
/// </summary>
|
/// <param name="integers">List of Integers.</param>
|
/// <returns>Least common multiple <c>lcm</c>(list of integers)</returns>
|
public static long LeastCommonMultiple(IList<long> integers)
|
{
|
if (null == integers)
|
{
|
throw new ArgumentNullException(nameof(integers));
|
}
|
|
if (integers.Count == 0)
|
{
|
return 1;
|
}
|
|
var lcm = Math.Abs(integers[0]);
|
|
for (var i = 1; i < integers.Count; i++)
|
{
|
lcm = LeastCommonMultiple(lcm, integers[i]);
|
}
|
|
return lcm;
|
}
|
|
/// <summary>
|
/// Returns the least common multiple (<c>lcm</c>) of a set of integers using Euclid's algorithm.
|
/// </summary>
|
/// <param name="integers">List of Integers.</param>
|
/// <returns>Least common multiple <c>lcm</c>(list of integers)</returns>
|
public static long LeastCommonMultiple(params long[] integers)
|
{
|
return LeastCommonMultiple((IList<long>)integers);
|
}
|
|
/// <summary>
|
/// Returns the greatest common divisor (<c>gcd</c>) of two big integers.
|
/// </summary>
|
/// <param name="a">First Integer: a.</param>
|
/// <param name="b">Second Integer: b.</param>
|
/// <returns>Greatest common divisor <c>gcd</c>(a,b)</returns>
|
public static BigInteger GreatestCommonDivisor(BigInteger a, BigInteger b)
|
{
|
return BigInteger.GreatestCommonDivisor(a, b);
|
}
|
|
/// <summary>
|
/// Returns the greatest common divisor (<c>gcd</c>) of a set of big integers.
|
/// </summary>
|
/// <param name="integers">List of Integers.</param>
|
/// <returns>Greatest common divisor <c>gcd</c>(list of integers)</returns>
|
public static BigInteger GreatestCommonDivisor(IList<BigInteger> integers)
|
{
|
if (null == integers)
|
{
|
throw new ArgumentNullException(nameof(integers));
|
}
|
|
if (integers.Count == 0)
|
{
|
return 0;
|
}
|
|
var gcd = BigInteger.Abs(integers[0]);
|
|
for (int i = 1; (i < integers.Count) && (gcd > BigInteger.One); i++)
|
{
|
gcd = GreatestCommonDivisor(gcd, integers[i]);
|
}
|
|
return gcd;
|
}
|
|
/// <summary>
|
/// Returns the greatest common divisor (<c>gcd</c>) of a set of big integers.
|
/// </summary>
|
/// <param name="integers">List of Integers.</param>
|
/// <returns>Greatest common divisor <c>gcd</c>(list of integers)</returns>
|
public static BigInteger GreatestCommonDivisor(params BigInteger[] integers)
|
{
|
return GreatestCommonDivisor((IList<BigInteger>)integers);
|
}
|
|
/// <summary>
|
/// Computes the extended greatest common divisor, such that a*x + b*y = <c>gcd</c>(a,b).
|
/// </summary>
|
/// <param name="a">First Integer: a.</param>
|
/// <param name="b">Second Integer: b.</param>
|
/// <param name="x">Resulting x, such that a*x + b*y = <c>gcd</c>(a,b).</param>
|
/// <param name="y">Resulting y, such that a*x + b*y = <c>gcd</c>(a,b)</param>
|
/// <returns>Greatest common divisor <c>gcd</c>(a,b)</returns>
|
/// <example>
|
/// <code>
|
/// long x,y,d;
|
/// d = Fn.GreatestCommonDivisor(45,18,out x, out y);
|
/// -> d == 9 && x == 1 && y == -2
|
/// </code>
|
/// The <c>gcd</c> of 45 and 18 is 9: 18 = 2*9, 45 = 5*9. 9 = 1*45 -2*18, therefore x=1 and y=-2.
|
/// </example>
|
public static BigInteger ExtendedGreatestCommonDivisor(BigInteger a, BigInteger b, out BigInteger x, out BigInteger y)
|
{
|
BigInteger mp = BigInteger.One, np = BigInteger.Zero, m = BigInteger.Zero, n = BigInteger.One;
|
|
while (!b.IsZero)
|
{
|
BigInteger rem;
|
BigInteger quot = BigInteger.DivRem(a, b, out rem);
|
a = b;
|
b = rem;
|
|
BigInteger tmp = m;
|
m = mp - (quot*m);
|
mp = tmp;
|
|
tmp = n;
|
n = np - (quot*n);
|
np = tmp;
|
}
|
|
if (a >= BigInteger.Zero)
|
{
|
x = mp;
|
y = np;
|
return a;
|
}
|
|
x = -mp;
|
y = -np;
|
return -a;
|
}
|
|
/// <summary>
|
/// Returns the least common multiple (<c>lcm</c>) of two big integers.
|
/// </summary>
|
/// <param name="a">First Integer: a.</param>
|
/// <param name="b">Second Integer: b.</param>
|
/// <returns>Least common multiple <c>lcm</c>(a,b)</returns>
|
public static BigInteger LeastCommonMultiple(BigInteger a, BigInteger b)
|
{
|
if (a.IsZero || b.IsZero)
|
{
|
return BigInteger.Zero;
|
}
|
|
return BigInteger.Abs((a/BigInteger.GreatestCommonDivisor(a, b))*b);
|
}
|
|
/// <summary>
|
/// Returns the least common multiple (<c>lcm</c>) of a set of big integers.
|
/// </summary>
|
/// <param name="integers">List of Integers.</param>
|
/// <returns>Least common multiple <c>lcm</c>(list of integers)</returns>
|
public static BigInteger LeastCommonMultiple(IList<BigInteger> integers)
|
{
|
if (null == integers)
|
{
|
throw new ArgumentNullException(nameof(integers));
|
}
|
|
if (integers.Count == 0)
|
{
|
return 1;
|
}
|
|
var lcm = BigInteger.Abs(integers[0]);
|
|
for (int i = 1; i < integers.Count; i++)
|
{
|
lcm = LeastCommonMultiple(lcm, integers[i]);
|
}
|
|
return lcm;
|
}
|
|
/// <summary>
|
/// Returns the least common multiple (<c>lcm</c>) of a set of big integers.
|
/// </summary>
|
/// <param name="integers">List of Integers.</param>
|
/// <returns>Least common multiple <c>lcm</c>(list of integers)</returns>
|
public static BigInteger LeastCommonMultiple(params BigInteger[] integers)
|
{
|
return LeastCommonMultiple((IList<BigInteger>)integers);
|
}
|
}
|
}
|