using IStation.Numerics.LinearAlgebra;
|
using System;
|
using System.Collections.Generic;
|
using System.Linq;
|
|
namespace IStation.Numerics.Optimization
|
{
|
public class LevenbergMarquardtMinimizer : NonlinearMinimizerBase
|
{
|
/// <summary>
|
/// The scale factor for initial mu
|
/// </summary>
|
public static double InitialMu { get; set; }
|
|
public LevenbergMarquardtMinimizer(double initialMu = 1E-3, double gradientTolerance = 1E-15, double stepTolerance = 1E-15, double functionTolerance = 1E-15, int maximumIterations = -1)
|
: base(gradientTolerance, stepTolerance, functionTolerance, maximumIterations)
|
{
|
InitialMu = initialMu;
|
}
|
|
public NonlinearMinimizationResult FindMinimum(IObjectiveModel objective, Vector<double> initialGuess,
|
Vector<double> lowerBound = null, Vector<double> upperBound = null, Vector<double> scales = null, List<bool> isFixed = null)
|
{
|
return Minimum(objective, initialGuess, lowerBound, upperBound, scales, isFixed, InitialMu, GradientTolerance, StepTolerance, FunctionTolerance, MaximumIterations);
|
}
|
|
public NonlinearMinimizationResult FindMinimum(IObjectiveModel objective, double[] initialGuess,
|
double[] lowerBound = null, double[] upperBound = null, double[] scales = null, bool[] isFixed = null)
|
{
|
if (objective == null)
|
throw new ArgumentNullException("objective");
|
if (initialGuess == null)
|
throw new ArgumentNullException("initialGuess");
|
|
var lb = (lowerBound == null) ? null : CreateVector.Dense<double>(lowerBound);
|
var ub = (upperBound == null) ? null : CreateVector.Dense<double>(upperBound);
|
var sc = (scales == null) ? null : CreateVector.Dense<double>(scales);
|
var fx = (isFixed == null) ? null : isFixed.ToList();
|
|
return Minimum(objective, CreateVector.DenseOfArray<double>(initialGuess), lb, ub, sc, fx, InitialMu, GradientTolerance, StepTolerance, FunctionTolerance, MaximumIterations);
|
}
|
|
/// <summary>
|
/// Non-linear least square fitting by the Levenberg-Marduardt algorithm.
|
/// </summary>
|
/// <param name="objective">The objective function, including model, observations, and parameter bounds.</param>
|
/// <param name="initialGuess">The initial guess values.</param>
|
/// <param name="initialMu">The initial damping parameter of mu.</param>
|
/// <param name="gradientTolerance">The stopping threshold for infinity norm of the gradient vector.</param>
|
/// <param name="stepTolerance">The stopping threshold for L2 norm of the change of parameters.</param>
|
/// <param name="functionTolerance">The stopping threshold for L2 norm of the residuals.</param>
|
/// <param name="maximumIterations">The max iterations.</param>
|
/// <returns>The result of the Levenberg-Marquardt minimization</returns>
|
public static NonlinearMinimizationResult Minimum(IObjectiveModel objective, Vector<double> initialGuess,
|
Vector<double> lowerBound = null, Vector<double> upperBound = null, Vector<double> scales = null, List<bool> isFixed = null,
|
double initialMu = 1E-3, double gradientTolerance = 1E-15, double stepTolerance = 1E-15, double functionTolerance = 1E-15, int maximumIterations = -1)
|
{
|
// Non-linear least square fitting by the Levenberg-Marduardt algorithm.
|
//
|
// Levenberg-Marquardt is finding the minimum of a function F(p) that is a sum of squares of nonlinear functions.
|
//
|
// For given datum pair (x, y), uncertainties σ (or weighting W = 1 / σ^2) and model function f = f(x; p),
|
// let's find the parameters of the model so that the sum of the quares of the deviations is minimized.
|
//
|
// F(p) = 1/2 * ∑{ Wi * (yi - f(xi; p))^2 }
|
// pbest = argmin F(p)
|
//
|
// We will use the following terms:
|
// Weighting W is the diagonal matrix and can be decomposed as LL', so L = 1/σ
|
// Residuals, R = L(y - f(x; p))
|
// Residual sum of squares, RSS = ||R||^2 = R.DotProduct(R)
|
// Jacobian J = df(x; p)/dp
|
// Gradient g = -J'W(y − f(x; p)) = -J'LR
|
// Approximated Hessian H = J'WJ
|
//
|
// The Levenberg-Marquardt algorithm is summarized as follows:
|
// initially let μ = τ * max(diag(H)).
|
// repeat
|
// solve linear equations: (H + μI)ΔP = -g
|
// let ρ = (||R||^2 - ||Rnew||^2) / (Δp'(μΔp - g)).
|
// if ρ > ε, P = P + ΔP; μ = μ * max(1/3, 1 - (2ρ - 1)^3); ν = 2;
|
// otherwise μ = μ*ν; ν = 2*ν;
|
//
|
// References:
|
// [1]. Madsen, K., H. B. Nielsen, and O. Tingleff.
|
// "Methods for Non-Linear Least Squares Problems. Technical University of Denmark, 2004. Lecture notes." (2004).
|
// Available Online from: http://orbit.dtu.dk/files/2721358/imm3215.pdf
|
// [2]. Gavin, Henri.
|
// "The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems."
|
// Department of Civil and Environmental Engineering, Duke University (2017): 1-19.
|
// Availble Online from: http://people.duke.edu/~hpgavin/ce281/lm.pdf
|
|
if (objective == null)
|
throw new ArgumentNullException("objective");
|
|
ValidateBounds(initialGuess, lowerBound, upperBound, scales);
|
|
objective.SetParameters(initialGuess, isFixed);
|
|
ExitCondition exitCondition = ExitCondition.None;
|
|
// First, calculate function values and setup variables
|
var P = ProjectToInternalParameters(initialGuess); // current internal parameters
|
var Pstep = Vector<double>.Build.Dense(P.Count); // the change of parameters
|
var RSS = EvaluateFunction(objective, P); // Residual Sum of Squares = R'R
|
|
if (maximumIterations < 0)
|
{
|
maximumIterations = 200 * (initialGuess.Count + 1);
|
}
|
|
// if RSS == NaN, stop
|
if (double.IsNaN(RSS))
|
{
|
exitCondition = ExitCondition.InvalidValues;
|
return new NonlinearMinimizationResult(objective, -1, exitCondition);
|
}
|
|
// When only function evaluation is needed, set maximumIterations to zero,
|
if (maximumIterations == 0)
|
{
|
exitCondition = ExitCondition.ManuallyStopped;
|
}
|
|
// if RSS <= fTol, stop
|
if (RSS <= functionTolerance)
|
{
|
exitCondition = ExitCondition.Converged; // SmallRSS
|
}
|
|
// Evaluate gradient and Hessian
|
var jac = EvaluateJacobian(objective, P);
|
var Gradient = jac.Item1; // objective.Gradient;
|
var Hessian = jac.Item2; // objective.Hessian;
|
var diagonalOfHessian = Hessian.Diagonal(); // diag(H)
|
|
// if ||g||oo <= gtol, found and stop
|
if (Gradient.InfinityNorm() <= gradientTolerance)
|
{
|
exitCondition = ExitCondition.RelativeGradient;
|
}
|
|
if (exitCondition != ExitCondition.None)
|
{
|
return new NonlinearMinimizationResult(objective, -1, exitCondition);
|
}
|
|
double mu = initialMu * diagonalOfHessian.Max(); // μ
|
double nu = 2; // ν
|
int iterations = 0;
|
while (iterations < maximumIterations && exitCondition == ExitCondition.None)
|
{
|
iterations++;
|
|
while (true)
|
{
|
Hessian.SetDiagonal(Hessian.Diagonal() + mu); // hessian[i, i] = hessian[i, i] + mu;
|
|
// solve normal equations
|
Pstep = Hessian.Solve(-Gradient);
|
|
// if ||ΔP|| <= xTol * (||P|| + xTol), found and stop
|
if (Pstep.L2Norm() <= stepTolerance * (stepTolerance + P.DotProduct(P)))
|
{
|
exitCondition = ExitCondition.RelativePoints;
|
break;
|
}
|
|
var Pnew = P + Pstep; // new parameters to test
|
// evaluate function at Pnew
|
var RSSnew = EvaluateFunction(objective, Pnew);
|
|
if (double.IsNaN(RSSnew))
|
{
|
exitCondition = ExitCondition.InvalidValues;
|
break;
|
}
|
|
// calculate the ratio of the actual to the predicted reduction.
|
// ρ = (RSS - RSSnew) / (Δp'(μΔp - g))
|
var predictedReduction = Pstep.DotProduct(mu * Pstep - Gradient);
|
var rho = (predictedReduction != 0)
|
? (RSS - RSSnew) / predictedReduction
|
: 0;
|
|
if (rho > 0.0)
|
{
|
// accepted
|
Pnew.CopyTo(P);
|
RSS = RSSnew;
|
|
// update gradient and Hessian
|
jac = EvaluateJacobian(objective, P);
|
Gradient = jac.Item1; // objective.Gradient;
|
Hessian = jac.Item2; // objective.Hessian;
|
diagonalOfHessian = Hessian.Diagonal();
|
|
// if ||g||_oo <= gtol, found and stop
|
if (Gradient.InfinityNorm() <= gradientTolerance)
|
{
|
exitCondition = ExitCondition.RelativeGradient;
|
}
|
|
// if ||R||^2 < fTol, found and stop
|
if (RSS <= functionTolerance)
|
{
|
exitCondition = ExitCondition.Converged; // SmallRSS
|
}
|
|
mu = mu * Math.Max(1.0 / 3.0, 1.0 - Math.Pow(2.0 * rho - 1.0, 3));
|
nu = 2;
|
|
break;
|
}
|
else
|
{
|
// rejected, increased μ
|
mu = mu * nu;
|
nu = 2 * nu;
|
|
Hessian.SetDiagonal(diagonalOfHessian);
|
}
|
}
|
}
|
|
if (iterations >= maximumIterations)
|
{
|
exitCondition = ExitCondition.ExceedIterations;
|
}
|
|
return new NonlinearMinimizationResult(objective, iterations, exitCondition);
|
}
|
}
|
}
|