ningshuxia
2022-10-08 afedb8fd4e17a5a911deee3dae04a10a93e6a39a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
using IStation.Numerics.LinearAlgebra;
using System;
using System.Collections.Generic;
using System.Linq;
 
namespace IStation.Numerics.Optimization
{
    public class LevenbergMarquardtMinimizer : NonlinearMinimizerBase
    {
        /// <summary>
        /// The scale factor for initial mu
        /// </summary>
        public static double InitialMu { get; set; }
 
        public LevenbergMarquardtMinimizer(double initialMu = 1E-3, double gradientTolerance = 1E-15, double stepTolerance = 1E-15, double functionTolerance = 1E-15, int maximumIterations = -1)
            : base(gradientTolerance, stepTolerance, functionTolerance, maximumIterations)
        {
            InitialMu = initialMu;
        }
 
        public NonlinearMinimizationResult FindMinimum(IObjectiveModel objective, Vector<double> initialGuess,
            Vector<double> lowerBound = null, Vector<double> upperBound = null, Vector<double> scales = null, List<bool> isFixed = null)
        {
            return Minimum(objective, initialGuess, lowerBound, upperBound, scales, isFixed, InitialMu, GradientTolerance, StepTolerance, FunctionTolerance, MaximumIterations);
        }
 
        public NonlinearMinimizationResult FindMinimum(IObjectiveModel objective, double[] initialGuess,
            double[] lowerBound = null, double[] upperBound = null, double[] scales = null, bool[] isFixed = null)
        {
            if (objective == null)
                throw new ArgumentNullException("objective");
            if (initialGuess == null)
                throw new ArgumentNullException("initialGuess");
 
            var lb = (lowerBound == null) ? null : CreateVector.Dense<double>(lowerBound);
            var ub = (upperBound == null) ? null : CreateVector.Dense<double>(upperBound);
            var sc = (scales == null) ? null : CreateVector.Dense<double>(scales);
            var fx = (isFixed == null) ? null : isFixed.ToList();
 
            return Minimum(objective, CreateVector.DenseOfArray<double>(initialGuess), lb, ub, sc, fx, InitialMu, GradientTolerance, StepTolerance, FunctionTolerance, MaximumIterations);
        }
 
        /// <summary>
        /// Non-linear least square fitting by the Levenberg-Marduardt algorithm.
        /// </summary>
        /// <param name="objective">The objective function, including model, observations, and parameter bounds.</param>
        /// <param name="initialGuess">The initial guess values.</param>
        /// <param name="initialMu">The initial damping parameter of mu.</param>        
        /// <param name="gradientTolerance">The stopping threshold for infinity norm of the gradient vector.</param>
        /// <param name="stepTolerance">The stopping threshold for L2 norm of the change of parameters.</param>
        /// <param name="functionTolerance">The stopping threshold for L2 norm of the residuals.</param>
        /// <param name="maximumIterations">The max iterations.</param>
        /// <returns>The result of the Levenberg-Marquardt minimization</returns>
        public static NonlinearMinimizationResult Minimum(IObjectiveModel objective, Vector<double> initialGuess,
            Vector<double> lowerBound = null, Vector<double> upperBound = null, Vector<double> scales = null, List<bool> isFixed = null,
            double initialMu = 1E-3, double gradientTolerance = 1E-15, double stepTolerance = 1E-15, double functionTolerance = 1E-15, int maximumIterations = -1)
        {
            // Non-linear least square fitting by the Levenberg-Marduardt algorithm.
            //
            // Levenberg-Marquardt is finding the minimum of a function F(p) that is a sum of squares of nonlinear functions.
            //
            // For given datum pair (x, y), uncertainties σ (or weighting W  =  1 / σ^2) and model function f = f(x; p),
            // let's find the parameters of the model so that the sum of the quares of the deviations is minimized.
            //
            //    F(p) = 1/2 * ∑{ Wi * (yi - f(xi; p))^2 }
            //    pbest = argmin F(p)
            //
            // We will use the following terms:
            //    Weighting W is the diagonal matrix and can be decomposed as LL', so L = 1/σ
            //    Residuals, R = L(y - f(x; p))
            //    Residual sum of squares, RSS = ||R||^2 = R.DotProduct(R)
            //    Jacobian J = df(x; p)/dp
            //    Gradient g = -J'W(y − f(x; p)) = -J'LR 
            //    Approximated Hessian H = J'WJ
            //
            // The Levenberg-Marquardt algorithm is summarized as follows:
            //    initially let μ = τ * max(diag(H)).
            //    repeat 
            //       solve linear equations: (H + μI)ΔP = -g
            //       let ρ = (||R||^2 - ||Rnew||^2) / (Δp'(μΔp - g)).
            //       if ρ > ε, P = P + ΔP; μ = μ * max(1/3, 1 - (2ρ - 1)^3); ν = 2;
            //       otherwise μ = μ*ν; ν = 2*ν;
            //
            // References:
            // [1]. Madsen, K., H. B. Nielsen, and O. Tingleff.
            //    "Methods for Non-Linear Least Squares Problems. Technical University of Denmark, 2004. Lecture notes." (2004).
            //    Available Online from: http://orbit.dtu.dk/files/2721358/imm3215.pdf
            // [2]. Gavin, Henri.
            //    "The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems."
            //    Department of Civil and Environmental Engineering, Duke University (2017): 1-19.
            //    Availble Online from: http://people.duke.edu/~hpgavin/ce281/lm.pdf
 
            if (objective == null)
                throw new ArgumentNullException("objective");
            
            ValidateBounds(initialGuess, lowerBound, upperBound, scales);
            
            objective.SetParameters(initialGuess, isFixed);
 
            ExitCondition exitCondition = ExitCondition.None;
 
            // First, calculate function values and setup variables
            var P = ProjectToInternalParameters(initialGuess); // current internal parameters
            var Pstep = Vector<double>.Build.Dense(P.Count); // the change of parameters    
            var RSS = EvaluateFunction(objective, P);  // Residual Sum of Squares = R'R
 
            if (maximumIterations < 0)
            {
                maximumIterations = 200 * (initialGuess.Count + 1);
            }
 
            // if RSS == NaN, stop
            if (double.IsNaN(RSS))
            {
                exitCondition = ExitCondition.InvalidValues;
                return new NonlinearMinimizationResult(objective, -1, exitCondition);
            }
 
            // When only function evaluation is needed, set maximumIterations to zero, 
            if (maximumIterations == 0)
            {
                exitCondition = ExitCondition.ManuallyStopped;
            }
 
            // if RSS <= fTol, stop
            if (RSS <= functionTolerance)
            {
                exitCondition = ExitCondition.Converged; // SmallRSS
            }
 
            // Evaluate gradient and Hessian
            var jac = EvaluateJacobian(objective, P);
            var Gradient = jac.Item1; // objective.Gradient;
            var Hessian = jac.Item2; // objective.Hessian;
            var diagonalOfHessian = Hessian.Diagonal(); // diag(H)
 
            // if ||g||oo <= gtol, found and stop
            if (Gradient.InfinityNorm() <= gradientTolerance)
            {
                exitCondition = ExitCondition.RelativeGradient;
            }
 
            if (exitCondition != ExitCondition.None)
            {
                return new NonlinearMinimizationResult(objective, -1, exitCondition);
            }
 
            double mu = initialMu * diagonalOfHessian.Max(); // μ 
            double nu = 2; //  ν
            int iterations = 0;
            while (iterations < maximumIterations && exitCondition == ExitCondition.None)
            {
                iterations++;
 
                while (true)
                {
                    Hessian.SetDiagonal(Hessian.Diagonal() + mu); // hessian[i, i] = hessian[i, i] + mu;
                    
                    // solve normal equations
                    Pstep = Hessian.Solve(-Gradient);
 
                    // if ||ΔP|| <= xTol * (||P|| + xTol), found and stop
                    if (Pstep.L2Norm() <= stepTolerance * (stepTolerance + P.DotProduct(P)))
                    {
                        exitCondition = ExitCondition.RelativePoints;
                        break;
                    }
 
                    var Pnew = P + Pstep; // new parameters to test
                    // evaluate function at Pnew
                    var RSSnew = EvaluateFunction(objective, Pnew);
 
                    if (double.IsNaN(RSSnew))
                    {
                        exitCondition = ExitCondition.InvalidValues;
                        break;
                    }
 
                    // calculate the ratio of the actual to the predicted reduction.
                    // ρ = (RSS - RSSnew) / (Δp'(μΔp - g))
                    var predictedReduction = Pstep.DotProduct(mu * Pstep - Gradient);
                    var rho = (predictedReduction != 0)
                            ? (RSS - RSSnew) / predictedReduction
                            : 0;
 
                    if (rho > 0.0)
                    {
                        // accepted
                        Pnew.CopyTo(P);
                        RSS = RSSnew;
 
                        // update gradient and Hessian
                        jac = EvaluateJacobian(objective, P);
                        Gradient = jac.Item1; // objective.Gradient;
                        Hessian = jac.Item2; // objective.Hessian;
                        diagonalOfHessian = Hessian.Diagonal();                        
 
                        // if ||g||_oo <= gtol, found and stop
                        if (Gradient.InfinityNorm() <= gradientTolerance)
                        {
                            exitCondition = ExitCondition.RelativeGradient;
                        }
 
                        // if ||R||^2 < fTol, found and stop
                        if (RSS <= functionTolerance)
                        {
                            exitCondition = ExitCondition.Converged; // SmallRSS
                        }
 
                        mu = mu * Math.Max(1.0 / 3.0, 1.0 - Math.Pow(2.0 * rho - 1.0, 3));
                        nu = 2;
 
                        break;
                    }
                    else
                    {
                        // rejected, increased μ
                        mu = mu * nu;
                        nu = 2 * nu;
 
                        Hessian.SetDiagonal(diagonalOfHessian);
                    }
                }
            }
 
            if (iterations >= maximumIterations)
            {
                exitCondition = ExitCondition.ExceedIterations;
            }
 
            return new NonlinearMinimizationResult(objective, iterations, exitCondition);
        }
    }
}