ningshuxia
2022-10-08 afedb8fd4e17a5a911deee3dae04a10a93e6a39a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// <copyright file="BfgsMinimizer.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2017 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
 
using System;
using System.Collections.Generic;
using System.Linq;
using IStation.Numerics.LinearAlgebra;
using IStation.Numerics.Optimization.LineSearch;
 
namespace IStation.Numerics.Optimization
{
    /// <summary>
    /// Limited Memory version of Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
    /// </summary>
    public class LimitedMemoryBfgsMinimizer : MinimizerBase, IUnconstrainedMinimizer
    {
        public int Memory { get; set; }
 
        /// <inheritdoc />
        /// <summary>
        /// Creates L-BFGS minimizer
        /// </summary>
        /// <param name="memory">Numbers of gradients and steps to store.</param>
        public LimitedMemoryBfgsMinimizer(double gradientTolerance, double parameterTolerance, double functionProgressTolerance, int memory, int maximumIterations=1000) : base(gradientTolerance, parameterTolerance, functionProgressTolerance, maximumIterations)
        {
            Memory = memory;
        }
 
        /// <summary>
        /// Find the minimum of the objective function given lower and upper bounds
        /// </summary>
        /// <param name="objective">The objective function, must support a gradient</param>
        /// <param name="initialGuess">The initial guess</param>
        /// <returns>The MinimizationResult which contains the minimum and the ExitCondition</returns>
        public MinimizationResult FindMinimum(IObjectiveFunction objective, Vector<double> initialGuess)
        {
            if (!objective.IsGradientSupported)
                throw new IncompatibleObjectiveException("Gradient not supported in objective function, but required for L-BFGS minimization.");
 
            objective.EvaluateAt(initialGuess);
            ValidateGradientAndObjective(objective);
 
            // Check that we're not already done
            ExitCondition currentExitCondition = ExitCriteriaSatisfied(objective, null, 0);
            if (currentExitCondition != ExitCondition.None)
                return new MinimizationResult(objective, 0, currentExitCondition);
 
            // Set up line search algorithm
            var lineSearcher = new WeakWolfeLineSearch(1e-4, 0.9, Math.Max(ParameterTolerance, 1e-10), 1000);
 
            // First step
 
            var lineSearchDirection = -objective.Gradient;
            var stepSize = 100 * GradientTolerance / (lineSearchDirection * lineSearchDirection);
 
            var previousPoint = objective;
 
            LineSearchResult lineSearchResult;
            try
            {
                lineSearchResult = lineSearcher.FindConformingStep(objective, lineSearchDirection, stepSize);
            }
            catch (OptimizationException e)
            {
                throw new InnerOptimizationException("Line search failed.", e);
            }
            catch (ArgumentException e)
            {
                throw new InnerOptimizationException("Line search failed.", e);
            }
 
            var candidate = lineSearchResult.FunctionInfoAtMinimum;
            ValidateGradientAndObjective(candidate);
 
            var gradient = candidate.Gradient;
            var step = candidate.Point - initialGuess;
            var yk = candidate.Gradient - previousPoint.Gradient;
            var ykhistory = new List<Vector<double>>() {yk};
            var skhistory = new List<Vector<double>>() {step};
            var rhokhistory = new List<double>() {1.0/yk.DotProduct(step)};
 
            // Subsequent steps
            int iterations = 1;
            int totalLineSearchSteps = lineSearchResult.Iterations;
            int iterationsWithNontrivialLineSearch = lineSearchResult.Iterations > 0 ? 0 : 1;
            previousPoint = candidate;
            while (iterations++ < MaximumIterations && previousPoint.Gradient.Norm(2) >= GradientTolerance)
            {
                lineSearchDirection = -ApplyLbfgsUpdate(previousPoint, ykhistory, skhistory, rhokhistory);
                var directionalDerivative = previousPoint.Gradient.DotProduct(lineSearchDirection);
                if (directionalDerivative > 0)
                    throw new InnerOptimizationException("Direction is not a descent direction.");
                try
                {
                    lineSearchResult = lineSearcher.FindConformingStep(previousPoint, lineSearchDirection, 1.0);
                }
                catch (OptimizationException e)
                {
                    throw new InnerOptimizationException("Line search failed.", e);
                }
                catch (ArgumentException e)
                {
                    throw new InnerOptimizationException("Line search failed.", e);
                }
                iterationsWithNontrivialLineSearch += lineSearchResult.Iterations > 0 ? 1 : 0;
                totalLineSearchSteps += lineSearchResult.Iterations;
 
                candidate = lineSearchResult.FunctionInfoAtMinimum;
                currentExitCondition = ExitCriteriaSatisfied(candidate, previousPoint, iterations);
                if (currentExitCondition != ExitCondition.None)
                    break;
                step = candidate.Point - previousPoint.Point;
                yk = candidate.Gradient - previousPoint.Gradient;
                ykhistory.Add(yk);
                skhistory.Add(step);
                rhokhistory.Add(1.0/yk.DotProduct(step));
                previousPoint = candidate;
                if (ykhistory.Count > Memory)
                {
                    ykhistory.RemoveAt(0);
                    skhistory.RemoveAt(0);
                    rhokhistory.RemoveAt(0);
                }
            }
 
            if (iterations == MaximumIterations && currentExitCondition == ExitCondition.None)
                throw new MaximumIterationsException(FormattableString.Invariant($"Maximum iterations ({MaximumIterations}) reached."));
 
            return new MinimizationWithLineSearchResult(candidate, iterations, ExitCondition.AbsoluteGradient, totalLineSearchSteps, iterationsWithNontrivialLineSearch);
        }
 
        private Vector<double> ApplyLbfgsUpdate(IObjectiveFunction previousPoint, List<Vector<double>> ykhistory, List<Vector<double>> skhistory, List<double> rhokhistory)
        {
            var q = previousPoint.Gradient.Clone();
            var alphas = new Stack<double>();
            for (int k = ykhistory.Count - 1; k >= 0; k--)
            {
                var alpha = rhokhistory[k]*q.DotProduct(skhistory[k]);
                alphas.Push(alpha);
                q -= alpha*ykhistory[k];
            }
            var yk = ykhistory.Last();
            var sk = skhistory.Last();
            q *= yk.DotProduct(sk)/yk.DotProduct(yk);
            for (int k = 0; k < ykhistory.Count; k++)
            {
                var beta = rhokhistory[k]*ykhistory[k].DotProduct(q);
                q += skhistory[k]*(alphas.Pop() - beta);
            }
            return q;
        }
    }
}