// <copyright file="ObjectiveFunction.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2017 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using IStation.Numerics.LinearAlgebra;
|
using IStation.Numerics.Optimization.ObjectiveFunctions;
|
|
namespace IStation.Numerics.Optimization
|
{
|
public static class ObjectiveFunction
|
{
|
/// <summary>
|
/// Objective function where neither Gradient nor Hessian is available.
|
/// </summary>
|
public static IObjectiveFunction Value(Func<Vector<double>, double> function)
|
{
|
return new ValueObjectiveFunction(function);
|
}
|
|
/// <summary>
|
/// Objective function where the Gradient is available. Greedy evaluation.
|
/// </summary>
|
public static IObjectiveFunction Gradient(Func<Vector<double>, Tuple<double, Vector<double>>> function)
|
{
|
return new GradientObjectiveFunction(function);
|
}
|
|
/// <summary>
|
/// Objective function where the Gradient is available. Lazy evaluation.
|
/// </summary>
|
public static IObjectiveFunction Gradient(Func<Vector<double>, double> function, Func<Vector<double>, Vector<double>> gradient)
|
{
|
return new LazyObjectiveFunction(function, gradient: gradient);
|
}
|
|
/// <summary>
|
/// Objective function where the Hessian is available. Greedy evaluation.
|
/// </summary>
|
public static IObjectiveFunction Hessian(Func<Vector<double>, Tuple<double, Matrix<double>>> function)
|
{
|
return new HessianObjectiveFunction(function);
|
}
|
|
/// <summary>
|
/// Objective function where the Hessian is available. Lazy evaluation.
|
/// </summary>
|
public static IObjectiveFunction Hessian(Func<Vector<double>, double> function, Func<Vector<double>, Matrix<double>> hessian)
|
{
|
return new LazyObjectiveFunction(function, hessian: hessian);
|
}
|
|
/// <summary>
|
/// Objective function where both Gradient and Hessian are available. Greedy evaluation.
|
/// </summary>
|
public static IObjectiveFunction GradientHessian(Func<Vector<double>, Tuple<double, Vector<double>, Matrix<double>>> function)
|
{
|
return new GradientHessianObjectiveFunction(function);
|
}
|
|
/// <summary>
|
/// Objective function where both Gradient and Hessian are available. Lazy evaluation.
|
/// </summary>
|
public static IObjectiveFunction GradientHessian(Func<Vector<double>, double> function, Func<Vector<double>, Vector<double>> gradient, Func<Vector<double>, Matrix<double>> hessian)
|
{
|
return new LazyObjectiveFunction(function, gradient: gradient, hessian: hessian);
|
}
|
|
/// <summary>
|
/// Objective function where neither first nor second derivative is available.
|
/// </summary>
|
public static IScalarObjectiveFunction ScalarValue(Func<double, double> function)
|
{
|
return new ScalarValueObjectiveFunction(function);
|
}
|
|
/// <summary>
|
/// Objective function where the first derivative is available.
|
/// </summary>
|
public static IScalarObjectiveFunction ScalarDerivative(Func<double, double> function, Func<double, double> derivative)
|
{
|
return new ScalarObjectiveFunction(function, derivative);
|
}
|
|
/// <summary>
|
/// Objective function where the first and second derivatives are available.
|
/// </summary>
|
public static IScalarObjectiveFunction ScalarSecondDerivative(Func<double, double> function, Func<double, double> derivative, Func<double,double> secondDerivative)
|
{
|
return new ScalarObjectiveFunction(function, derivative, secondDerivative);
|
}
|
|
/// <summary>
|
/// objective model with a user supplied jacobian for non-linear least squares regression.
|
/// </summary>
|
public static IObjectiveModel NonlinearModel(Func<Vector<double>, Vector<double>, Vector<double>> function,
|
Func<Vector<double>, Vector<double>, Matrix<double>> derivatives,
|
Vector<double> observedX, Vector<double> observedY, Vector<double> weight = null)
|
{
|
var objective = new NonlinearObjectiveFunction(function, derivatives);
|
objective.SetObserved(observedX, observedY, weight);
|
return objective;
|
}
|
|
/// <summary>
|
/// Objective model for non-linear least squares regression.
|
/// </summary>
|
public static IObjectiveModel NonlinearModel(Func<Vector<double>, Vector<double>, Vector<double>> function,
|
Vector<double> observedX, Vector<double> observedY, Vector<double> weight = null,
|
int accuracyOrder = 2)
|
{
|
var objective = new NonlinearObjectiveFunction(function, accuracyOrder: accuracyOrder);
|
objective.SetObserved(observedX, observedY, weight);
|
return objective;
|
}
|
|
/// <summary>
|
/// Objective model with a user supplied jacobian for non-linear least squares regression.
|
/// </summary>
|
public static IObjectiveModel NonlinearModel(Func<Vector<double>, double, double> function,
|
Func<Vector<double>, double, Vector<double>> derivatives,
|
Vector<double> observedX, Vector<double> observedY, Vector<double> weight = null)
|
{
|
Vector<double> func(Vector<double> point, Vector<double> x)
|
{
|
var functionValues = CreateVector.Dense<double>(x.Count);
|
for (int i = 0; i < x.Count; i++)
|
{
|
functionValues[i] = function(point, x[i]);
|
}
|
|
return functionValues;
|
}
|
|
Matrix<double> prime(Vector<double> point, Vector<double> x)
|
{
|
var derivativeValues = CreateMatrix.Dense<double>(x.Count, point.Count);
|
for (int i = 0; i < x.Count; i++)
|
{
|
derivativeValues.SetRow(i, derivatives(point, x[i]));
|
}
|
|
return derivativeValues;
|
}
|
|
var objective = new NonlinearObjectiveFunction(func, prime);
|
objective.SetObserved(observedX, observedY, weight);
|
return objective;
|
}
|
|
/// <summary>
|
/// Objective model for non-linear least squares regression.
|
/// </summary>
|
public static IObjectiveModel NonlinearModel(Func<Vector<double>, double, double> function,
|
Vector<double> observedX, Vector<double> observedY, Vector<double> weight = null,
|
int accuracyOrder = 2)
|
{
|
Vector<double> func(Vector<double> point, Vector<double> x)
|
{
|
var functionValues = CreateVector.Dense<double>(x.Count);
|
for (int i = 0; i < x.Count; i++)
|
{
|
functionValues[i] = function(point, x[i]);
|
}
|
|
return functionValues;
|
}
|
|
var objective = new NonlinearObjectiveFunction(func, accuracyOrder: accuracyOrder);
|
objective.SetObserved(observedX, observedY, weight);
|
return objective;
|
}
|
|
/// <summary>
|
/// Objective function with a user supplied jacobian for nonlinear least squares regression.
|
/// </summary>
|
public static IObjectiveFunction NonlinearFunction(Func<Vector<double>, Vector<double>, Vector<double>> function,
|
Func<Vector<double>, Vector<double>, Matrix<double>> derivatives,
|
Vector<double> observedX, Vector<double> observedY, Vector<double> weight = null)
|
{
|
var objective = new NonlinearObjectiveFunction(function, derivatives);
|
objective.SetObserved(observedX, observedY, weight);
|
return objective.ToObjectiveFunction();
|
}
|
|
/// <summary>
|
/// Objective function for nonlinear least squares regression.
|
/// The numerical jacobian with accuracy order is used.
|
/// </summary>
|
public static IObjectiveFunction NonlinearFunction(Func<Vector<double>, Vector<double>, Vector<double>> function,
|
Vector<double> observedX, Vector<double> observedY, Vector<double> weight = null,
|
int accuracyOrder = 2)
|
{
|
var objective = new NonlinearObjectiveFunction(function, null, accuracyOrder: accuracyOrder);
|
objective.SetObserved(observedX, observedY, weight);
|
return objective.ToObjectiveFunction();
|
}
|
}
|
}
|