// <copyright file="WeakWolfeLineSearch.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2017 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using IStation.Numerics.LinearAlgebra;
|
|
namespace IStation.Numerics.Optimization.LineSearch
|
{
|
/// <summary>
|
/// Search for a step size alpha that satisfies the weak Wolfe conditions. The weak Wolfe
|
/// Conditions are
|
/// i) Armijo Rule: f(x_k + alpha_k p_k) <= f(x_k) + c1 alpha_k p_k^T g(x_k)
|
/// ii) Curvature Condition: p_k^T g(x_k + alpha_k p_k) >= c2 p_k^T g(x_k)
|
/// where g(x) is the gradient of f(x), 0 < c1 < c2 < 1.
|
///
|
/// Implementation is based on http://www.math.washington.edu/~burke/crs/408/lectures/L9-weak-Wolfe.pdf
|
///
|
/// references:
|
/// http://en.wikipedia.org/wiki/Wolfe_conditions
|
/// http://www.math.washington.edu/~burke/crs/408/lectures/L9-weak-Wolfe.pdf
|
/// </summary>
|
public class WeakWolfeLineSearch : WolfeLineSearch
|
{
|
public WeakWolfeLineSearch(double c1, double c2, double parameterTolerance, int maxIterations = 10)
|
: base(c1,c2,parameterTolerance,maxIterations)
|
{
|
// Validation in base class
|
}
|
|
protected override ExitCondition WolfeExitCondition => ExitCondition.WeakWolfeCriteria;
|
|
protected override bool WolfeCondition(double stepDd, double initialDd)
|
{
|
return stepDd < C2 * initialDd;
|
}
|
|
protected override void ValidateValue(IObjectiveFunctionEvaluation eval)
|
{
|
if (!IsFinite(eval.Value))
|
{
|
throw new EvaluationException(FormattableString.Invariant($"Non-finite value returned by objective function: {eval.Value}"), eval);
|
}
|
}
|
|
protected override void ValidateInputArguments(IObjectiveFunctionEvaluation startingPoint, Vector<double> searchDirection, double initialStep, double upperBound)
|
{
|
if (!startingPoint.IsGradientSupported)
|
throw new ArgumentException("objective function does not support gradient");
|
}
|
|
protected override void ValidateGradient(IObjectiveFunctionEvaluation eval)
|
{
|
foreach (double x in eval.Gradient)
|
{
|
if (!IsFinite(x))
|
{
|
throw new EvaluationException(FormattableString.Invariant($"Non-finite value returned by gradient: {x}"), eval);
|
}
|
}
|
}
|
|
static bool IsFinite(double x)
|
{
|
return !(double.IsNaN(x) || double.IsInfinity(x));
|
}
|
}
|
}
|