// <copyright file="Beta.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2014 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
// <contribution>
|
// Cephes Math Library, Stephen L. Moshier
|
// ALGLIB 2.0.1, Sergey Bochkanov
|
// </contribution>
|
|
using System;
|
|
// ReSharper disable CheckNamespace
|
namespace IStation.Numerics
|
// ReSharper restore CheckNamespace
|
{
|
|
public static partial class SpecialFunctions
|
{
|
/// <summary>
|
/// Computes the logarithm of the Euler Beta function.
|
/// </summary>
|
/// <param name="z">The first Beta parameter, a positive real number.</param>
|
/// <param name="w">The second Beta parameter, a positive real number.</param>
|
/// <returns>The logarithm of the Euler Beta function evaluated at z,w.</returns>
|
/// <exception cref="ArgumentException">If <paramref name="z"/> or <paramref name="w"/> are not positive.</exception>
|
public static double BetaLn(double z, double w)
|
{
|
if (z <= 0.0)
|
{
|
throw new ArgumentException("Value must be positive.", nameof(z));
|
}
|
|
if (w <= 0.0)
|
{
|
throw new ArgumentException("Value must be positive.", nameof(w));
|
}
|
|
return GammaLn(z) + GammaLn(w) - GammaLn(z + w);
|
}
|
|
/// <summary>
|
/// Computes the Euler Beta function.
|
/// </summary>
|
/// <param name="z">The first Beta parameter, a positive real number.</param>
|
/// <param name="w">The second Beta parameter, a positive real number.</param>
|
/// <returns>The Euler Beta function evaluated at z,w.</returns>
|
/// <exception cref="ArgumentException">If <paramref name="z"/> or <paramref name="w"/> are not positive.</exception>
|
public static double Beta(double z, double w)
|
{
|
return Math.Exp(BetaLn(z, w));
|
}
|
|
/// <summary>
|
/// Returns the lower incomplete (unregularized) beta function
|
/// B(a,b,x) = int(t^(a-1)*(1-t)^(b-1),t=0..x) for real a > 0, b > 0, 1 >= x >= 0.
|
/// </summary>
|
/// <param name="a">The first Beta parameter, a positive real number.</param>
|
/// <param name="b">The second Beta parameter, a positive real number.</param>
|
/// <param name="x">The upper limit of the integral.</param>
|
/// <returns>The lower incomplete (unregularized) beta function.</returns>
|
public static double BetaIncomplete(double a, double b, double x)
|
{
|
return BetaRegularized(a, b, x)*Beta(a, b);
|
}
|
|
/// <summary>
|
/// Returns the regularized lower incomplete beta function
|
/// I_x(a,b) = 1/Beta(a,b) * int(t^(a-1)*(1-t)^(b-1),t=0..x) for real a > 0, b > 0, 1 >= x >= 0.
|
/// </summary>
|
/// <param name="a">The first Beta parameter, a positive real number.</param>
|
/// <param name="b">The second Beta parameter, a positive real number.</param>
|
/// <param name="x">The upper limit of the integral.</param>
|
/// <returns>The regularized lower incomplete beta function.</returns>
|
public static double BetaRegularized(double a, double b, double x)
|
{
|
if (a < 0.0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(a), "Value must not be negative (zero is ok).");
|
}
|
|
if (b < 0.0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(b), "Value must not be negative (zero is ok).");
|
}
|
|
if (x < 0.0 || x > 1.0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(x), $"Value is expected to be between 0.0 and 1.0 (including 0.0 and 1.0).");
|
}
|
|
var bt = (x == 0.0 || x == 1.0)
|
? 0.0
|
: Math.Exp(GammaLn(a + b) - GammaLn(a) - GammaLn(b) + (a*Math.Log(x)) + (b*Math.Log(1.0 - x)));
|
|
var symmetryTransformation = x >= (a + 1.0)/(a + b + 2.0);
|
|
/* Continued fraction representation */
|
var eps = Precision.DoublePrecision;
|
var fpmin = 0.0.Increment()/eps;
|
|
if (symmetryTransformation)
|
{
|
x = 1.0 - x;
|
var swap = a;
|
a = b;
|
b = swap;
|
}
|
|
var qab = a + b;
|
var qap = a + 1.0;
|
var qam = a - 1.0;
|
var c = 1.0;
|
var d = 1.0 - (qab*x/qap);
|
|
if (Math.Abs(d) < fpmin)
|
{
|
d = fpmin;
|
}
|
|
d = 1.0/d;
|
var h = d;
|
|
for (int m = 1, m2 = 2; m <= 50000; m++, m2 += 2)
|
{
|
var aa = m*(b - m)*x/((qam + m2)*(a + m2));
|
d = 1.0 + (aa*d);
|
|
if (Math.Abs(d) < fpmin)
|
{
|
d = fpmin;
|
}
|
|
c = 1.0 + (aa/c);
|
if (Math.Abs(c) < fpmin)
|
{
|
c = fpmin;
|
}
|
|
d = 1.0/d;
|
h *= d*c;
|
aa = -(a + m)*(qab + m)*x/((a + m2)*(qap + m2));
|
d = 1.0 + (aa*d);
|
|
if (Math.Abs(d) < fpmin)
|
{
|
d = fpmin;
|
}
|
|
c = 1.0 + (aa/c);
|
|
if (Math.Abs(c) < fpmin)
|
{
|
c = fpmin;
|
}
|
|
d = 1.0/d;
|
var del = d*c;
|
h *= del;
|
|
if (Math.Abs(del - 1.0) <= eps)
|
{
|
return symmetryTransformation ? 1.0 - (bt*h/a) : bt*h/a;
|
}
|
}
|
|
return symmetryTransformation ? 1.0 - (bt*h/a) : bt*h/a;
|
}
|
}
|
}
|