// <copyright file="ExponentialIntegral.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2014 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
// <contribution>
|
// Ashley Messer
|
// </contribution>
|
|
using System;
|
|
// ReSharper disable CheckNamespace
|
namespace IStation.Numerics
|
// ReSharper restore CheckNamespace
|
{
|
public static partial class SpecialFunctions
|
{
|
/// <summary>
|
/// Computes the generalized Exponential Integral function (En).
|
/// </summary>
|
/// <param name="x">The argument of the Exponential Integral function.</param>
|
/// <param name="n">Integer power of the denominator term. Generalization index.</param>
|
/// <returns>The value of the Exponential Integral function.</returns>
|
/// <remarks>
|
/// <para>This implementation of the computation of the Exponential Integral function follows the derivation in
|
/// "Handbook of Mathematical Functions, Applied Mathematics Series, Volume 55", Abramowitz, M., and Stegun, I.A. 1964, reprinted 1968 by
|
/// Dover Publications, New York), Chapters 6, 7, and 26.
|
/// AND
|
/// "Advanced mathematical methods for scientists and engineers", Bender, Carl M.; Steven A. Orszag (1978). page 253
|
/// </para>
|
/// <para>
|
/// for x > 1 uses continued fraction approach that is often used to compute incomplete gamma.
|
/// for 0 < x <= 1 uses Taylor series expansion
|
/// </para>
|
/// <para>Our unit tests suggest that the accuracy of the Exponential Integral function is correct up to 13 floating point digits.</para>
|
/// </remarks>
|
public static double ExponentialIntegral(double x, int n)
|
{
|
//parameter validation
|
if (n < 0 || x < 0.0)
|
{
|
throw new ArgumentOutOfRangeException(FormattableString.Invariant($"x and n must be positive: x={x}, n={n}"));
|
}
|
|
const double epsilon = 0.00000000000000001;
|
int maxIterations = 100;
|
int i, ii;
|
double ndbl = (double)n;
|
double result;
|
double nearDoubleMin = 1e-100; //needs a very small value that is not quite as small as the lowest value double can take
|
double factorial = 1.0d;
|
double del;
|
double psi;
|
double a, b, c, d, h; //variables for continued fraction
|
|
//special cases
|
if (n == 0)
|
{
|
return Math.Exp(-1.0d*x)/x;
|
}
|
else if (x == 0.0d)
|
{
|
return 1.0d/(ndbl - 1.0d);
|
}
|
//general cases
|
//continued fraction for large x
|
if (x > 1.0d)
|
{
|
b = x + ((double)n);
|
c = 1.0d/nearDoubleMin;
|
d = 1.0d/b;
|
h = d;
|
for (i = 1; i <= maxIterations; i++)
|
{
|
a = -1.0d*((double)i)*((ndbl - 1.0d) + (double)i);
|
b += 2.0d;
|
d = 1.0d/(a*d + b);
|
c = b + a/c;
|
del = c*d;
|
h = h*del;
|
if (Math.Abs(del - 1.0d) < epsilon)
|
{
|
return h*Math.Exp(-x);
|
}
|
}
|
throw new ArithmeticException(FormattableString.Invariant($"Continued fraction failed to converge for x={x}, n={n})"));
|
}
|
//series computation for small x
|
else
|
{
|
result = ((ndbl - 1.0d) != 0 ? 1.0/(ndbl - 1.0d) : (-1.0d*Math.Log(x) - Constants.EulerMascheroni)); //Set first term.
|
for (i = 1; i <= maxIterations; i++)
|
{
|
factorial *= (-1.0d*x/((double)i));
|
if (i != (ndbl - 1.0d))
|
{
|
del = -factorial/(i - (ndbl - 1.0d));
|
}
|
else
|
{
|
psi = -1.0d*Constants.EulerMascheroni;
|
for (ii = 1; ii <= (ndbl - 1.0d); ii++)
|
{
|
psi += (1.0d/((double)ii));
|
}
|
del = factorial*(-1.0d*Math.Log(x) + psi);
|
}
|
result += del;
|
if (Math.Abs(del) < Math.Abs(result)*epsilon)
|
{
|
return result;
|
}
|
}
|
throw new ArithmeticException(FormattableString.Invariant($"Series failed to converge for x={x}, n={n})"));
|
}
|
}
|
}
|
}
|