// <copyright file="Svd.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2015 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
|
namespace IStation.Numerics.LinearAlgebra.Factorization
|
{
|
/// <summary>
|
/// <para>A class which encapsulates the functionality of the singular value decomposition (SVD).</para>
|
/// <para>Suppose M is an m-by-n matrix whose entries are real numbers.
|
/// Then there exists a factorization of the form M = UΣVT where:
|
/// - U is an m-by-m unitary matrix;
|
/// - Σ is m-by-n diagonal matrix with nonnegative real numbers on the diagonal;
|
/// - VT denotes transpose of V, an n-by-n unitary matrix;
|
/// Such a factorization is called a singular-value decomposition of M. A common convention is to order the diagonal
|
/// entries Σ(i,i) in descending order. In this case, the diagonal matrix Σ is uniquely determined
|
/// by M (though the matrices U and V are not). The diagonal entries of Σ are known as the singular values of M.</para>
|
/// </summary>
|
/// <remarks>
|
/// The computation of the singular value decomposition is done at construction time.
|
/// </remarks>
|
/// <typeparam name="T">Supported data types are double, single, <see cref="Complex"/>, and <see cref="Complex32"/>.</typeparam>
|
public abstract class Svd<T> : ISolver<T>
|
where T : struct, IEquatable<T>, IFormattable
|
{
|
readonly Lazy<Matrix<T>> _lazyW;
|
|
/// <summary>Indicating whether U and VT matrices have been computed during SVD factorization.</summary>
|
protected readonly bool VectorsComputed;
|
|
protected Svd(Vector<T> s, Matrix<T> u, Matrix<T> vt, bool vectorsComputed)
|
{
|
S = s;
|
U = u;
|
VT = vt;
|
|
VectorsComputed = vectorsComputed;
|
|
_lazyW = new Lazy<Matrix<T>>(ComputeW);
|
}
|
|
Matrix<T> ComputeW()
|
{
|
var rows = U.RowCount;
|
var columns = VT.ColumnCount;
|
var result = Matrix<T>.Build.SameAs(U, rows, columns);
|
for (var i = 0; i < rows; i++)
|
{
|
for (var j = 0; j < columns; j++)
|
{
|
if (i == j)
|
{
|
result.At(i, i, S[i]);
|
}
|
}
|
}
|
|
return result;
|
}
|
|
/// <summary>
|
/// Gets the singular values (Σ) of matrix in ascending value.
|
/// </summary>
|
public Vector<T> S { get; }
|
|
/// <summary>
|
/// Gets the left singular vectors (U - m-by-m unitary matrix)
|
/// </summary>
|
public Matrix<T> U { get; }
|
|
/// <summary>
|
/// Gets the transpose right singular vectors (transpose of V, an n-by-n unitary matrix)
|
/// </summary>
|
public Matrix<T> VT { get; }
|
|
/// <summary>
|
/// Returns the singular values as a diagonal <see cref="Matrix{T}"/>.
|
/// </summary>
|
/// <returns>The singular values as a diagonal <see cref="Matrix{T}"/>.</returns>
|
public Matrix<T> W => _lazyW.Value;
|
|
/// <summary>
|
/// Gets the effective numerical matrix rank.
|
/// </summary>
|
/// <value>The number of non-negligible singular values.</value>
|
public abstract int Rank { get; }
|
|
/// <summary>
|
/// Gets the two norm of the <see cref="Matrix{T}"/>.
|
/// </summary>
|
/// <returns>The 2-norm of the <see cref="Matrix{T}"/>.</returns>
|
public abstract double L2Norm { get; }
|
|
/// <summary>
|
/// Gets the condition number <b>max(S) / min(S)</b>
|
/// </summary>
|
/// <returns>The condition number.</returns>
|
public abstract T ConditionNumber { get; }
|
|
/// <summary>
|
/// Gets the determinant of the square matrix for which the SVD was computed.
|
/// </summary>
|
public abstract T Determinant { get; }
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>AX = B</b>, with A SVD factorized.
|
/// </summary>
|
/// <param name="input">The right hand side <see cref="Matrix{T}"/>, <b>B</b>.</param>
|
/// <returns>The left hand side <see cref="Matrix{T}"/>, <b>X</b>.</returns>
|
public virtual Matrix<T> Solve(Matrix<T> input)
|
{
|
if (!VectorsComputed)
|
{
|
throw new InvalidOperationException("The singular vectors were not computed.");
|
}
|
|
var x = Matrix<T>.Build.SameAs(U, VT.ColumnCount, input.ColumnCount, fullyMutable: true);
|
Solve(input, x);
|
return x;
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>AX = B</b>, with A SVD factorized.
|
/// </summary>
|
/// <param name="input">The right hand side <see cref="Matrix{T}"/>, <b>B</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>X</b>.</param>
|
public abstract void Solve(Matrix<T> input, Matrix<T> result);
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>Ax = b</b>, with A SVD factorized.
|
/// </summary>
|
/// <param name="input">The right hand side vector, <b>b</b>.</param>
|
/// <returns>The left hand side <see cref="Vector{T}"/>, <b>x</b>.</returns>
|
public virtual Vector<T> Solve(Vector<T> input)
|
{
|
if (!VectorsComputed)
|
{
|
throw new InvalidOperationException("The singular vectors were not computed.");
|
}
|
|
var x = Vector<T>.Build.SameAs(U, VT.ColumnCount);
|
Solve(input, x);
|
return x;
|
}
|
|
/// <summary>
|
/// Solves a system of linear equations, <b>Ax = b</b>, with A SVD factorized.
|
/// </summary>
|
/// <param name="input">The right hand side vector, <b>b</b>.</param>
|
/// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>x</b>.</param>
|
public abstract void Solve(Vector<T> input, Vector<T> result);
|
}
|
}
|