// <copyright file="Distance.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using IStation.Numerics.LinearAlgebra;
|
using IStation.Numerics.Providers.LinearAlgebra;
|
using IStation.Numerics.Statistics;
|
|
namespace IStation.Numerics
|
{
|
/// <summary>
|
/// Metrics to measure the distance between two structures.
|
/// </summary>
|
public static class Distance
|
{
|
/// <summary>
|
/// Sum of Absolute Difference (SAD), i.e. the L1-norm (Manhattan) of the difference.
|
/// </summary>
|
public static double SAD<T>(Vector<T> a, Vector<T> b) where T : struct, IEquatable<T>, IFormattable
|
{
|
return (a - b).L1Norm();
|
}
|
|
/// <summary>
|
/// Sum of Absolute Difference (SAD), i.e. the L1-norm (Manhattan) of the difference.
|
/// </summary>
|
public static double SAD(double[] a, double[] b)
|
{
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
double sum = 0d;
|
for (var i = 0; i < a.Length; i++)
|
{
|
sum += Math.Abs(a[i] - b[i]);
|
}
|
return sum;
|
}
|
|
/// <summary>
|
/// Sum of Absolute Difference (SAD), i.e. the L1-norm (Manhattan) of the difference.
|
/// </summary>
|
public static float SAD(float[] a, float[] b)
|
{
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
float sum = 0f;
|
for (var i = 0; i < a.Length; i++)
|
{
|
sum += Math.Abs(a[i] - b[i]);
|
}
|
return sum;
|
}
|
|
/// <summary>
|
/// Mean-Absolute Error (MAE), i.e. the normalized L1-norm (Manhattan) of the difference.
|
/// </summary>
|
public static double MAE<T>(Vector<T> a, Vector<T> b) where T : struct, IEquatable<T>, IFormattable
|
{
|
return (a - b).L1Norm()/a.Count;
|
}
|
|
/// <summary>
|
/// Mean-Absolute Error (MAE), i.e. the normalized L1-norm (Manhattan) of the difference.
|
/// </summary>
|
public static double MAE(double[] a, double[] b)
|
{
|
return SAD(a, b)/a.Length;
|
}
|
|
/// <summary>
|
/// Mean-Absolute Error (MAE), i.e. the normalized L1-norm (Manhattan) of the difference.
|
/// </summary>
|
public static float MAE(float[] a, float[] b)
|
{
|
return SAD(a, b)/a.Length;
|
}
|
|
/// <summary>
|
/// Sum of Squared Difference (SSD), i.e. the squared L2-norm (Euclidean) of the difference.
|
/// </summary>
|
public static double SSD<T>(Vector<T> a, Vector<T> b) where T : struct, IEquatable<T>, IFormattable
|
{
|
var norm = (a - b).L2Norm();
|
return norm*norm;
|
}
|
|
/// <summary>
|
/// Sum of Squared Difference (SSD), i.e. the squared L2-norm (Euclidean) of the difference.
|
/// </summary>
|
public static double SSD(double[] a, double[] b)
|
{
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
var diff = new double[a.Length];
|
LinearAlgebraControl.Provider.SubtractArrays(a, b, diff);
|
return LinearAlgebraControl.Provider.DotProduct(diff, diff);
|
}
|
|
/// <summary>
|
/// Sum of Squared Difference (SSD), i.e. the squared L2-norm (Euclidean) of the difference.
|
/// </summary>
|
public static float SSD(float[] a, float[] b)
|
{
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
var diff = new float[a.Length];
|
LinearAlgebraControl.Provider.SubtractArrays(a, b, diff);
|
return LinearAlgebraControl.Provider.DotProduct(diff, diff);
|
}
|
|
/// <summary>
|
/// Mean-Squared Error (MSE), i.e. the normalized squared L2-norm (Euclidean) of the difference.
|
/// </summary>
|
public static double MSE<T>(Vector<T> a, Vector<T> b) where T : struct, IEquatable<T>, IFormattable
|
{
|
var norm = (a - b).L2Norm();
|
return norm*norm/a.Count;
|
}
|
|
/// <summary>
|
/// Mean-Squared Error (MSE), i.e. the normalized squared L2-norm (Euclidean) of the difference.
|
/// </summary>
|
public static double MSE(double[] a, double[] b)
|
{
|
return SSD(a, b)/a.Length;
|
}
|
|
/// <summary>
|
/// Mean-Squared Error (MSE), i.e. the normalized squared L2-norm (Euclidean) of the difference.
|
/// </summary>
|
public static float MSE(float[] a, float[] b)
|
{
|
return SSD(a, b)/a.Length;
|
}
|
|
/// <summary>
|
/// Euclidean Distance, i.e. the L2-norm of the difference.
|
/// </summary>
|
public static double Euclidean<T>(Vector<T> a, Vector<T> b) where T : struct, IEquatable<T>, IFormattable
|
{
|
return (a - b).L2Norm();
|
}
|
|
/// <summary>
|
/// Euclidean Distance, i.e. the L2-norm of the difference.
|
/// </summary>
|
public static double Euclidean(double[] a, double[] b)
|
{
|
return Math.Sqrt(SSD(a, b));
|
}
|
|
/// <summary>
|
/// Euclidean Distance, i.e. the L2-norm of the difference.
|
/// </summary>
|
public static float Euclidean(float[] a, float[] b)
|
{
|
return (float) Math.Sqrt(SSD(a, b));
|
}
|
|
/// <summary>
|
/// Manhattan Distance, i.e. the L1-norm of the difference.
|
/// </summary>
|
public static double Manhattan<T>(Vector<T> a, Vector<T> b) where T : struct, IEquatable<T>, IFormattable
|
{
|
return (a - b).L1Norm();
|
}
|
|
/// <summary>
|
/// Manhattan Distance, i.e. the L1-norm of the difference.
|
/// </summary>
|
public static double Manhattan(double[] a, double[] b)
|
{
|
return SAD(a, b);
|
}
|
|
/// <summary>
|
/// Manhattan Distance, i.e. the L1-norm of the difference.
|
/// </summary>
|
public static float Manhattan(float[] a, float[] b)
|
{
|
return SAD(a, b);
|
}
|
|
/// <summary>
|
/// Chebyshev Distance, i.e. the Infinity-norm of the difference.
|
/// </summary>
|
public static double Chebyshev<T>(Vector<T> a, Vector<T> b) where T : struct, IEquatable<T>, IFormattable
|
{
|
return (a - b).InfinityNorm();
|
}
|
|
/// <summary>
|
/// Chebyshev Distance, i.e. the Infinity-norm of the difference.
|
/// </summary>
|
public static double Chebyshev(double[] a, double[] b)
|
{
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
double max = Math.Abs(a[0] - b[0]);
|
for (int i = 1; i < a.Length; i++)
|
{
|
var next = Math.Abs(a[i] - b[i]);
|
if (next > max)
|
{
|
max = next;
|
}
|
}
|
return max;
|
}
|
|
/// <summary>
|
/// Chebyshev Distance, i.e. the Infinity-norm of the difference.
|
/// </summary>
|
public static float Chebyshev(float[] a, float[] b)
|
{
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
float max = Math.Abs(a[0] - b[0]);
|
for (int i = 1; i < a.Length; i++)
|
{
|
var next = Math.Abs(a[i] - b[i]);
|
if (next > max)
|
{
|
max = next;
|
}
|
}
|
return max;
|
}
|
|
/// <summary>
|
/// Minkowski Distance, i.e. the generalized p-norm of the difference.
|
/// </summary>
|
public static double Minkowski<T>(double p, Vector<T> a, Vector<T> b) where T : struct, IEquatable<T>, IFormattable
|
{
|
return (a - b).Norm(p);
|
}
|
|
/// <summary>
|
/// Minkowski Distance, i.e. the generalized p-norm of the difference.
|
/// </summary>
|
public static double Minkowski(double p, double[] a, double[] b)
|
{
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
if (p < 0d)
|
{
|
throw new ArgumentOutOfRangeException(nameof(p));
|
}
|
|
if (p == 1d)
|
{
|
return Manhattan(a, b);
|
}
|
|
if (p == 2d)
|
{
|
return Euclidean(a, b);
|
}
|
|
if (double.IsPositiveInfinity(p))
|
{
|
return Chebyshev(a, b);
|
}
|
|
double sum = 0d;
|
for (var i = 0; i < a.Length; i++)
|
{
|
sum += Math.Pow(Math.Abs(a[i] - b[i]), p);
|
}
|
return Math.Pow(sum, 1.0 / p);
|
}
|
|
/// <summary>
|
/// Minkowski Distance, i.e. the generalized p-norm of the difference.
|
/// </summary>
|
public static float Minkowski(double p, float[] a, float[] b)
|
{
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
if (p < 0d)
|
{
|
throw new ArgumentOutOfRangeException(nameof(p));
|
}
|
|
if (p == 1d)
|
{
|
return Manhattan(a, b);
|
}
|
|
if (p == 2d)
|
{
|
return Euclidean(a, b);
|
}
|
|
if (double.IsPositiveInfinity(p))
|
{
|
return Chebyshev(a, b);
|
}
|
|
double sum = 0d;
|
for (var i = 0; i < a.Length; i++)
|
{
|
sum += Math.Pow(Math.Abs(a[i] - b[i]), p);
|
}
|
return (float) Math.Pow(sum, 1.0/p);
|
}
|
|
/// <summary>
|
/// Canberra Distance, a weighted version of the L1-norm of the difference.
|
/// </summary>
|
public static double Canberra(double[] a, double[] b)
|
{
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
double sum = 0d;
|
for (var i = 0; i < a.Length; i++)
|
{
|
sum += Math.Abs(a[i] - b[i]) / (Math.Abs(a[i]) + Math.Abs(b[i]));
|
}
|
return sum;
|
}
|
|
/// <summary>
|
/// Canberra Distance, a weighted version of the L1-norm of the difference.
|
/// </summary>
|
public static float Canberra(float[] a, float[] b)
|
{
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
float sum = 0f;
|
for (var i = 0; i < a.Length; i++)
|
{
|
sum += Math.Abs(a[i] - b[i]) / (Math.Abs(a[i]) + Math.Abs(b[i]));
|
}
|
return sum;
|
}
|
|
/// <summary>
|
/// Cosine Distance, representing the angular distance while ignoring the scale.
|
/// </summary>
|
public static double Cosine(double[] a, double[] b)
|
{
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
var ab = LinearAlgebraControl.Provider.DotProduct(a, b);
|
var a2 = LinearAlgebraControl.Provider.DotProduct(a, a);
|
var b2 = LinearAlgebraControl.Provider.DotProduct(b, b);
|
return 1d - ab/Math.Sqrt(a2*b2);
|
}
|
|
/// <summary>
|
/// Cosine Distance, representing the angular distance while ignoring the scale.
|
/// </summary>
|
public static float Cosine(float[] a, float[] b)
|
{
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
var ab = LinearAlgebraControl.Provider.DotProduct(a, b);
|
var a2 = LinearAlgebraControl.Provider.DotProduct(a, a);
|
var b2 = LinearAlgebraControl.Provider.DotProduct(b, b);
|
return (float)(1d - ab/Math.Sqrt(a2*b2));
|
}
|
|
/// <summary>
|
/// Hamming Distance, i.e. the number of positions that have different values in the vectors.
|
/// </summary>
|
public static double Hamming(double[] a, double[] b)
|
{
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
int count = 0;
|
for (int i = 0; i < a.Length; i++)
|
{
|
if (a[i] != b[i])
|
{
|
count++;
|
}
|
}
|
return count;
|
}
|
|
/// <summary>
|
/// Hamming Distance, i.e. the number of positions that have different values in the vectors.
|
/// </summary>
|
public static float Hamming(float[] a, float[] b)
|
{
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
int count = 0;
|
for (int i = 0; i < a.Length; i++)
|
{
|
if (a[i] != b[i])
|
{
|
count++;
|
}
|
}
|
return count;
|
}
|
|
/// <summary>
|
/// Pearson's distance, i.e. 1 - the person correlation coefficient.
|
/// </summary>
|
public static double Pearson(IEnumerable<double> a, IEnumerable<double> b)
|
{
|
return 1.0 - Correlation.Pearson(a, b);
|
}
|
|
/// <summary>
|
/// Jaccard distance, i.e. 1 - the Jaccard index.
|
/// </summary>
|
/// <exception cref="ArgumentNullException">Thrown if a or b are null.</exception>
|
/// <exception cref="ArgumentException">Throw if a and b are of different lengths.</exception>
|
/// <returns>Jaccard distance.</returns>
|
public static double Jaccard(double[] a, double[] b)
|
{
|
int intersection = 0, union = 0;
|
|
if (a == null)
|
{
|
throw new ArgumentNullException(nameof(a));
|
}
|
|
if (b == null)
|
{
|
throw new ArgumentNullException(nameof(b));
|
}
|
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
if (a.Length == 0 && b.Length == 0)
|
{
|
return 0;
|
}
|
|
for (int x = 0, len = a.Length; x < len; x++)
|
{
|
if (a[x] != 0 && b[x] != 0)
|
{
|
if (a[x] == b[x])
|
{
|
intersection++;
|
}
|
|
union++;
|
}
|
}
|
|
return 1.0 - ((double)intersection / (double)union);
|
}
|
|
/// <summary>
|
/// Jaccard distance, i.e. 1 - the Jaccard index.
|
/// </summary>
|
/// <exception cref="ArgumentNullException">Thrown if a or b are null.</exception>
|
/// <exception cref="ArgumentException">Throw if a and b are of different lengths.</exception>
|
/// <returns>Jaccard distance.</returns>
|
public static double Jaccard(float[] a, float[] b)
|
{
|
int intersection = 0, union = 0;
|
|
if (a == null)
|
{
|
throw new ArgumentNullException(nameof(a));
|
}
|
|
if (b == null)
|
{
|
throw new ArgumentNullException(nameof(b));
|
}
|
|
if (a.Length != b.Length)
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.");
|
}
|
|
if (a.Length == 0 && b.Length == 0)
|
{
|
return 0;
|
}
|
|
for (int x = 0, len = a.Length; x < len; x++)
|
{
|
if (a[x] != 0 && b[x] != 0)
|
{
|
if (a[x] == b[x])
|
{
|
intersection++;
|
}
|
|
union++;
|
}
|
}
|
|
return 1.0 - ((float)intersection / (float)union);
|
}
|
}
|
}
|