// <copyright file="ChiSquare.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2014 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using IStation.Numerics.Random;
|
using IStation.Numerics.Threading;
|
|
namespace IStation.Numerics.Distributions
|
{
|
/// <summary>
|
/// Continuous Univariate Chi-Squared distribution.
|
/// This distribution is a sum of the squares of k independent standard normal random variables.
|
/// <a href="http://en.wikipedia.org/wiki/Chi-square_distribution">Wikipedia - ChiSquare distribution</a>.
|
/// </summary>
|
public class ChiSquared : IContinuousDistribution
|
{
|
System.Random _random;
|
|
readonly double _freedom;
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="ChiSquared"/> class.
|
/// </summary>
|
/// <param name="freedom">The degrees of freedom (k) of the distribution. Range: k > 0.</param>
|
public ChiSquared(double freedom)
|
{
|
if (!IsValidParameterSet(freedom))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = SystemRandomSource.Default;
|
_freedom = freedom;
|
}
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="ChiSquared"/> class.
|
/// </summary>
|
/// <param name="freedom">The degrees of freedom (k) of the distribution. Range: k > 0.</param>
|
/// <param name="randomSource">The random number generator which is used to draw random samples.</param>
|
public ChiSquared(double freedom, System.Random randomSource)
|
{
|
if (!IsValidParameterSet(freedom))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = randomSource ?? SystemRandomSource.Default;
|
_freedom = freedom;
|
}
|
|
/// <summary>
|
/// A string representation of the distribution.
|
/// </summary>
|
/// <returns>a string representation of the distribution.</returns>
|
public override string ToString()
|
{
|
return $"ChiSquared(k = {_freedom})";
|
}
|
|
/// <summary>
|
/// Tests whether the provided values are valid parameters for this distribution.
|
/// </summary>
|
/// <param name="freedom">The degrees of freedom (k) of the distribution. Range: k > 0.</param>
|
public static bool IsValidParameterSet(double freedom)
|
{
|
return freedom > 0.0;
|
}
|
|
/// <summary>
|
/// Gets the degrees of freedom (k) of the Chi-Squared distribution. Range: k > 0.
|
/// </summary>
|
public double DegreesOfFreedom => _freedom;
|
|
/// <summary>
|
/// Gets or sets the random number generator which is used to draw random samples.
|
/// </summary>
|
public System.Random RandomSource
|
{
|
get => _random;
|
set => _random = value ?? SystemRandomSource.Default;
|
}
|
|
/// <summary>
|
/// Gets the mean of the distribution.
|
/// </summary>
|
public double Mean => _freedom;
|
|
/// <summary>
|
/// Gets the variance of the distribution.
|
/// </summary>
|
public double Variance => 2.0*_freedom;
|
|
/// <summary>
|
/// Gets the standard deviation of the distribution.
|
/// </summary>
|
public double StdDev => Math.Sqrt(2.0*_freedom);
|
|
/// <summary>
|
/// Gets the entropy of the distribution.
|
/// </summary>
|
public double Entropy => (_freedom/2.0) + Math.Log(2.0*SpecialFunctions.Gamma(_freedom/2.0)) + ((1.0 - (_freedom/2.0))*SpecialFunctions.DiGamma(_freedom/2.0));
|
|
/// <summary>
|
/// Gets the skewness of the distribution.
|
/// </summary>
|
public double Skewness => Math.Sqrt(8.0/_freedom);
|
|
/// <summary>
|
/// Gets the mode of the distribution.
|
/// </summary>
|
public double Mode => _freedom - 2.0;
|
|
/// <summary>
|
/// Gets the median of the distribution.
|
/// </summary>
|
public double Median => _freedom - (2.0/3.0);
|
|
/// <summary>
|
/// Gets the minimum of the distribution.
|
/// </summary>
|
public double Minimum => 0.0;
|
|
/// <summary>
|
/// Gets the maximum of the distribution.
|
/// </summary>
|
public double Maximum => double.PositiveInfinity;
|
|
/// <summary>
|
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
|
/// </summary>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <returns>the density at <paramref name="x"/>.</returns>
|
/// <seealso cref="PDF"/>
|
public double Density(double x)
|
{
|
return PDF(_freedom, x);
|
}
|
|
/// <summary>
|
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the log density.</param>
|
/// <returns>the log density at <paramref name="x"/>.</returns>
|
/// <seealso cref="PDFLn"/>
|
public double DensityLn(double x)
|
{
|
return PDFLn(_freedom, x);
|
}
|
|
/// <summary>
|
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
|
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
|
/// <seealso cref="CDF"/>
|
public double CumulativeDistribution(double x)
|
{
|
return CDF(_freedom, x);
|
}
|
|
/// <summary>
|
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
|
/// at the given probability. This is also known as the quantile or percent point function.
|
/// </summary>
|
/// <param name="p">The location at which to compute the inverse cumulative density.</param>
|
/// <returns>the inverse cumulative density at <paramref name="p"/>.</returns>
|
/// <seealso cref="InvCDF"/>
|
public double InverseCumulativeDistribution(double p)
|
{
|
return InvCDF(_freedom, p);
|
}
|
|
/// <summary>
|
/// Generates a sample from the <c>ChiSquare</c> distribution.
|
/// </summary>
|
/// <returns>a sample from the distribution.</returns>
|
public double Sample()
|
{
|
return SampleUnchecked(_random, _freedom);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
public void Samples(double[] values)
|
{
|
SamplesUnchecked(_random, values, _freedom);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the <c>ChiSquare</c> distribution.
|
/// </summary>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public IEnumerable<double> Samples()
|
{
|
return SamplesUnchecked(_random, _freedom);
|
}
|
|
/// <summary>
|
/// Samples the distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="freedom">The degrees of freedom (k) of the distribution. Range: k > 0.</param>
|
/// <returns>a random number from the distribution.</returns>
|
static double SampleUnchecked(System.Random rnd, double freedom)
|
{
|
// Use the simple method if the degrees of freedom is an integer anyway
|
if (Math.Floor(freedom) == freedom && freedom < int.MaxValue)
|
{
|
double sum = 0;
|
var n = (int)freedom;
|
for (var i = 0; i < n; i++)
|
{
|
sum += Math.Pow(Normal.Sample(rnd, 0.0, 1.0), 2);
|
}
|
|
return sum;
|
}
|
|
// Call the gamma function (see http://en.wikipedia.org/wiki/Gamma_distribution#Specializations
|
// for a justification)
|
return Gamma.SampleUnchecked(rnd, freedom/2.0, .5);
|
}
|
|
internal static void SamplesUnchecked(System.Random rnd, double[] values, double freedom)
|
{
|
// Use the simple method if the degrees of freedom is an integer anyway
|
if (Math.Floor(freedom) == freedom && freedom < int.MaxValue)
|
{
|
var n = (int)freedom;
|
var standard = new double[values.Length*n];
|
Normal.SamplesUnchecked(rnd, standard, 0.0, 1.0);
|
CommonParallel.For(0, values.Length, 4096, (a, b) =>
|
{
|
for (int i = a; i < b; i++)
|
{
|
int k = i*n;
|
double sum = 0;
|
for (int j = 0; j < n; j++)
|
{
|
sum += standard[k + j]*standard[k + j];
|
}
|
|
values[i] = sum;
|
}
|
});
|
return;
|
}
|
|
// Call the gamma function (see http://en.wikipedia.org/wiki/Gamma_distribution#Specializations
|
// for a justification)
|
Gamma.SamplesUnchecked(rnd, values, freedom/2.0, .5);
|
}
|
|
static IEnumerable<double> SamplesUnchecked(System.Random rnd, double freedom)
|
{
|
while (true)
|
{
|
yield return SampleUnchecked(rnd, freedom);
|
}
|
}
|
|
/// <summary>
|
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
|
/// </summary>
|
/// <param name="freedom">The degrees of freedom (k) of the distribution. Range: k > 0.</param>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <returns>the density at <paramref name="x"/>.</returns>
|
/// <seealso cref="Density"/>
|
public static double PDF(double freedom, double x)
|
{
|
if (freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
if (double.IsPositiveInfinity(freedom) || double.IsPositiveInfinity(x) || x == 0.0)
|
{
|
return 0.0;
|
}
|
|
if (freedom > 160.0)
|
{
|
return Math.Exp(PDFLn(freedom, x));
|
}
|
|
return (Math.Pow(x, (freedom/2.0) - 1.0)*Math.Exp(-x/2.0))/(Math.Pow(2.0, freedom/2.0)*SpecialFunctions.Gamma(freedom/2.0));
|
}
|
|
/// <summary>
|
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
|
/// </summary>
|
/// <param name="freedom">The degrees of freedom (k) of the distribution. Range: k > 0.</param>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <returns>the log density at <paramref name="x"/>.</returns>
|
/// <seealso cref="DensityLn"/>
|
public static double PDFLn(double freedom, double x)
|
{
|
if (freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
if (double.IsPositiveInfinity(freedom) || double.IsPositiveInfinity(x) || x == 0.0)
|
{
|
return double.NegativeInfinity;
|
}
|
|
return (-x/2.0) + (((freedom/2.0) - 1.0)*Math.Log(x)) - ((freedom/2.0)*Math.Log(2)) - SpecialFunctions.GammaLn(freedom/2.0);
|
}
|
|
/// <summary>
|
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
|
/// <param name="freedom">The degrees of freedom (k) of the distribution. Range: k > 0.</param>
|
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
|
/// <seealso cref="CumulativeDistribution"/>
|
public static double CDF(double freedom, double x)
|
{
|
if (freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
if (double.IsPositiveInfinity(x))
|
{
|
return 1.0;
|
}
|
|
if (double.IsPositiveInfinity(freedom))
|
{
|
return 1.0;
|
}
|
|
return SpecialFunctions.GammaLowerRegularized(freedom/2.0, x/2.0);
|
}
|
|
/// <summary>
|
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
|
/// at the given probability. This is also known as the quantile or percent point function.
|
/// </summary>
|
/// <param name="freedom">The degrees of freedom (k) of the distribution. Range: k > 0.</param>
|
/// <param name="p">The location at which to compute the inverse cumulative density.</param>
|
/// <returns>the inverse cumulative density at <paramref name="p"/>.</returns>
|
public static double InvCDF(double freedom, double p)
|
{
|
if(!IsValidParameterSet(freedom))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SpecialFunctions.GammaLowerRegularizedInv(freedom / 2.0, p) / 0.5;
|
}
|
|
/// <summary>
|
/// Generates a sample from the <c>ChiSquare</c> distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="freedom">The degrees of freedom (k) of the distribution. Range: k > 0.</param>
|
/// <returns>a sample from the distribution. </returns>
|
public static double Sample(System.Random rnd, double freedom)
|
{
|
if (freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SampleUnchecked(rnd, freedom);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="freedom">The degrees of freedom (k) of the distribution. Range: k > 0.</param>
|
/// <returns>a sample from the distribution. </returns>
|
public static IEnumerable<double> Samples(System.Random rnd, double freedom)
|
{
|
if (freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SamplesUnchecked(rnd, freedom);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="values">The array to fill with the samples.</param>
|
/// <param name="freedom">The degrees of freedom (k) of the distribution. Range: k > 0.</param>
|
/// <returns>a sample from the distribution. </returns>
|
public static void Samples(System.Random rnd, double[] values, double freedom)
|
{
|
if (freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
SamplesUnchecked(rnd, values, freedom);
|
}
|
|
/// <summary>
|
/// Generates a sample from the <c>ChiSquare</c> distribution.
|
/// </summary>
|
/// <param name="freedom">The degrees of freedom (k) of the distribution. Range: k > 0.</param>
|
/// <returns>a sample from the distribution. </returns>
|
public static double Sample(double freedom)
|
{
|
if (freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SampleUnchecked(SystemRandomSource.Default, freedom);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the distribution.
|
/// </summary>
|
/// <param name="freedom">The degrees of freedom (k) of the distribution. Range: k > 0.</param>
|
/// <returns>a sample from the distribution. </returns>
|
public static IEnumerable<double> Samples(double freedom)
|
{
|
if (freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SamplesUnchecked(SystemRandomSource.Default, freedom);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
/// <param name="values">The array to fill with the samples.</param>
|
/// <param name="freedom">The degrees of freedom (k) of the distribution. Range: k > 0.</param>
|
/// <returns>a sample from the distribution. </returns>
|
public static void Samples(double[] values, double freedom)
|
{
|
if (freedom <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
SamplesUnchecked(SystemRandomSource.Default, values, freedom);
|
}
|
}
|
}
|