// <copyright file="ConwayMaxwellPoisson.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2014 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using IStation.Numerics.Random;
|
using IStation.Numerics.Threading;
|
|
namespace IStation.Numerics.Distributions
|
{
|
/// <summary>
|
/// Discrete Univariate Conway-Maxwell-Poisson distribution.
|
/// <para>The Conway-Maxwell-Poisson distribution is a generalization of the Poisson, Geometric and Bernoulli
|
/// distributions. It is parameterized by two real numbers "lambda" and "nu". For
|
/// <list>
|
/// <item>nu = 0 the distribution reverts to a Geometric distribution</item>
|
/// <item>nu = 1 the distribution reverts to the Poisson distribution</item>
|
/// <item>nu -> infinity the distribution converges to a Bernoulli distribution</item>
|
/// </list></para>
|
/// This implementation will cache the value of the normalization constant.
|
/// <a href="http://en.wikipedia.org/wiki/Conway%E2%80%93Maxwell%E2%80%93Poisson_distribution">Wikipedia - ConwayMaxwellPoisson distribution</a>.
|
/// </summary>
|
public class ConwayMaxwellPoisson : IDiscreteDistribution
|
{
|
System.Random _random;
|
|
readonly double _lambda;
|
readonly double _nu;
|
|
/// <summary>
|
/// The mean of the distribution.
|
/// </summary>
|
double _mean = double.MinValue;
|
|
/// <summary>
|
/// The variance of the distribution.
|
/// </summary>
|
double _variance = double.MinValue;
|
|
/// <summary>
|
/// Caches the value of the normalization constant.
|
/// </summary>
|
double _z = double.MinValue;
|
|
/// <summary>
|
/// Since many properties of the distribution can only be computed approximately, the tolerance
|
/// level specifies how much error we accept.
|
/// </summary>
|
const double Tolerance = 1e-12;
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="ConwayMaxwellPoisson"/> class.
|
/// </summary>
|
/// <param name="lambda">The lambda (λ) parameter. Range: λ > 0.</param>
|
/// <param name="nu">The rate of decay (ν) parameter. Range: ν ≥ 0.</param>
|
public ConwayMaxwellPoisson(double lambda, double nu)
|
{
|
if (!IsValidParameterSet(lambda, nu))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = SystemRandomSource.Default;
|
_lambda = lambda;
|
_nu = nu;
|
}
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="ConwayMaxwellPoisson"/> class.
|
/// </summary>
|
/// <param name="lambda">The lambda (λ) parameter. Range: λ > 0.</param>
|
/// <param name="nu">The rate of decay (ν) parameter. Range: ν ≥ 0.</param>
|
/// <param name="randomSource">The random number generator which is used to draw random samples.</param>
|
public ConwayMaxwellPoisson(double lambda, double nu, System.Random randomSource)
|
{
|
if (!IsValidParameterSet(lambda, nu))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = randomSource ?? SystemRandomSource.Default;
|
_lambda = lambda;
|
_nu = nu;
|
}
|
|
/// <summary>
|
/// Returns a <see cref="System.String"/> that represents this instance.
|
/// </summary>
|
/// <returns>A <see cref="System.String"/> that represents this instance.</returns>
|
public override string ToString()
|
{
|
return $"ConwayMaxwellPoisson(λ = {_lambda}, ν = {_nu})";
|
}
|
|
/// <summary>
|
/// Tests whether the provided values are valid parameters for this distribution.
|
/// </summary>
|
/// <param name="lambda">The lambda (λ) parameter. Range: λ > 0.</param>
|
/// <param name="nu">The rate of decay (ν) parameter. Range: ν ≥ 0.</param>
|
public static bool IsValidParameterSet(double lambda, double nu)
|
{
|
return lambda > 0.0 && nu >= 0.0;
|
}
|
|
/// <summary>
|
/// Gets the lambda (λ) parameter. Range: λ > 0.
|
/// </summary>
|
public double Lambda => _lambda;
|
|
/// <summary>
|
/// Gets the rate of decay (ν) parameter. Range: ν ≥ 0.
|
/// </summary>
|
public double Nu => _nu;
|
|
/// <summary>
|
/// Gets or sets the random number generator which is used to draw random samples.
|
/// </summary>
|
public System.Random RandomSource
|
{
|
get => _random;
|
set => _random = value ?? SystemRandomSource.Default;
|
}
|
|
/// <summary>
|
/// Gets the mean of the distribution.
|
/// </summary>
|
public double Mean
|
{
|
get
|
{
|
// Special case requiring no computation.
|
if (_lambda == 0)
|
{
|
return 0.0;
|
}
|
|
if (_mean != double.MinValue)
|
{
|
return _mean;
|
}
|
|
// The normalization constant for the distribution.
|
var z = 1 + _lambda;
|
|
// The probability of the next term.
|
var a1 = _lambda*_lambda/Math.Pow(2, _nu);
|
|
// The unnormalized mean.
|
var zx = _lambda;
|
|
// The contribution of the next term to the mean.
|
var ax1 = 2*a1;
|
|
for (var i = 3; i < 1000; i++)
|
{
|
var e = _lambda/Math.Pow(i, _nu);
|
var ex = _lambda/Math.Pow(i, _nu - 1)/(i - 1);
|
var a2 = a1*e;
|
var ax2 = ax1*ex;
|
|
if ((ax2 < ax1) && (a2 < a1))
|
{
|
var m = zx/z;
|
var upper = (zx + (ax1/(1 - (ax2/ax1))))/z;
|
var lower = zx/(z + (a1/(1 - (a2/a1))));
|
|
var r = (upper - lower)/m;
|
if (r < Tolerance)
|
{
|
break;
|
}
|
}
|
|
z = z + a1;
|
zx = zx + ax1;
|
a1 = a2;
|
ax1 = ax2;
|
}
|
|
_mean = zx/z;
|
return _mean;
|
}
|
}
|
|
/// <summary>
|
/// Gets the variance of the distribution.
|
/// </summary>
|
public double Variance
|
{
|
get
|
{
|
// Special case requiring no computation.
|
if (_lambda == 0)
|
{
|
return 0.0;
|
}
|
|
if (_variance != double.MinValue)
|
{
|
return _variance;
|
}
|
|
// The normalization constant for the distribution.
|
var z = 1 + _lambda;
|
|
// The probability of the next term.
|
var a1 = _lambda*_lambda/Math.Pow(2, _nu);
|
|
// The unnormalized second moment.
|
var zxx = _lambda;
|
|
// The contribution of the next term to the second moment.
|
var axx1 = 4*a1;
|
|
for (var i = 3; i < 1000; i++)
|
{
|
var e = _lambda/Math.Pow(i, _nu);
|
var exx = _lambda/Math.Pow(i, _nu - 2)/(i - 1)/(i - 1);
|
var a2 = a1*e;
|
var axx2 = axx1*exx;
|
|
if ((axx2 < axx1) && (a2 < a1))
|
{
|
var m = zxx/z;
|
var upper = (zxx + (axx1/(1 - (axx2/axx1))))/z;
|
var lower = zxx/(z + (a1/(1 - (a2/a1))));
|
|
var r = (upper - lower)/m;
|
if (r < Tolerance)
|
{
|
break;
|
}
|
}
|
|
z = z + a1;
|
zxx = zxx + axx1;
|
a1 = a2;
|
axx1 = axx2;
|
}
|
|
var mean = Mean;
|
_variance = (zxx/z) - (mean*mean);
|
return _variance;
|
}
|
}
|
|
/// <summary>
|
/// Gets the standard deviation of the distribution.
|
/// </summary>
|
public double StdDev => Math.Sqrt(Variance);
|
|
/// <summary>
|
/// Gets the entropy of the distribution.
|
/// </summary>
|
public double Entropy => throw new NotSupportedException();
|
|
/// <summary>
|
/// Gets the skewness of the distribution.
|
/// </summary>
|
public double Skewness => throw new NotSupportedException();
|
|
/// <summary>
|
/// Gets the mode of the distribution
|
/// </summary>
|
public int Mode => throw new NotSupportedException();
|
|
/// <summary>
|
/// Gets the median of the distribution.
|
/// </summary>
|
public double Median => throw new NotSupportedException();
|
|
/// <summary>
|
/// Gets the smallest element in the domain of the distributions which can be represented by an integer.
|
/// </summary>
|
public int Minimum => 0;
|
|
/// <summary>
|
/// Gets the largest element in the domain of the distributions which can be represented by an integer.
|
/// </summary>
|
public int Maximum => throw new NotSupportedException();
|
|
/// <summary>
|
/// Computes the probability mass (PMF) at k, i.e. P(X = k).
|
/// </summary>
|
/// <param name="k">The location in the domain where we want to evaluate the probability mass function.</param>
|
/// <returns>the probability mass at location <paramref name="k"/>.</returns>
|
public double Probability(int k)
|
{
|
return Math.Pow(_lambda, k)/Math.Pow(SpecialFunctions.Factorial(k), _nu)/Z;
|
}
|
|
/// <summary>
|
/// Computes the log probability mass (lnPMF) at k, i.e. ln(P(X = k)).
|
/// </summary>
|
/// <param name="k">The location in the domain where we want to evaluate the log probability mass function.</param>
|
/// <returns>the log probability mass at location <paramref name="k"/>.</returns>
|
public double ProbabilityLn(int k)
|
{
|
return k*Math.Log(_lambda) - _nu*SpecialFunctions.FactorialLn(k) - Math.Log(Z);
|
}
|
|
/// <summary>
|
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
|
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
|
public double CumulativeDistribution(double x)
|
{
|
var z = Z;
|
double sum = 0;
|
for (var i = 0; i < x + 1; i++)
|
{
|
sum += Math.Pow(_lambda, i)/Math.Pow(SpecialFunctions.Factorial(i), _nu)/z;
|
}
|
|
return sum;
|
}
|
|
/// <summary>
|
/// Computes the probability mass (PMF) at k, i.e. P(X = k).
|
/// </summary>
|
/// <param name="k">The location in the domain where we want to evaluate the probability mass function.</param>
|
/// <param name="lambda">The lambda (λ) parameter. Range: λ > 0.</param>
|
/// <param name="nu">The rate of decay (ν) parameter. Range: ν ≥ 0.</param>
|
/// <returns>the probability mass at location <paramref name="k"/>.</returns>
|
public static double PMF(double lambda, double nu, int k)
|
{
|
if (!(lambda > 0.0 && nu >= 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
var z = Normalization(lambda, nu);
|
return Math.Pow(lambda, k)/Math.Pow(SpecialFunctions.Factorial(k), nu)/z;
|
}
|
|
/// <summary>
|
/// Computes the log probability mass (lnPMF) at k, i.e. ln(P(X = k)).
|
/// </summary>
|
/// <param name="k">The location in the domain where we want to evaluate the log probability mass function.</param>
|
/// <param name="lambda">The lambda (λ) parameter. Range: λ > 0.</param>
|
/// <param name="nu">The rate of decay (ν) parameter. Range: ν ≥ 0.</param>
|
/// <returns>the log probability mass at location <paramref name="k"/>.</returns>
|
public static double PMFLn(double lambda, double nu, int k)
|
{
|
if (!(lambda > 0.0 && nu >= 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
var z = Normalization(lambda, nu);
|
return k*Math.Log(lambda) - nu*SpecialFunctions.FactorialLn(k) - Math.Log(z);
|
}
|
|
/// <summary>
|
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
|
/// <param name="lambda">The lambda (λ) parameter. Range: λ > 0.</param>
|
/// <param name="nu">The rate of decay (ν) parameter. Range: ν ≥ 0.</param>
|
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
|
/// <seealso cref="CumulativeDistribution"/>
|
public static double CDF(double lambda, double nu, double x)
|
{
|
if (!(lambda > 0.0 && nu >= 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
var z = Normalization(lambda, nu);
|
double sum = 0;
|
for (var i = 0; i < x + 1; i++)
|
{
|
sum += Math.Pow(lambda, i)/Math.Pow(SpecialFunctions.Factorial(i), nu)/z;
|
}
|
|
return sum;
|
}
|
|
/// <summary>
|
/// Gets the normalization constant of the Conway-Maxwell-Poisson distribution.
|
/// </summary>
|
double Z
|
{
|
get
|
{
|
if (_z != double.MinValue)
|
{
|
return _z;
|
}
|
|
_z = Normalization(_lambda, _nu);
|
return _z;
|
}
|
}
|
|
/// <summary>
|
/// Computes an approximate normalization constant for the CMP distribution.
|
/// </summary>
|
/// <param name="lambda">The lambda (λ) parameter for the CMP distribution.</param>
|
/// <param name="nu">The rate of decay (ν) parameter for the CMP distribution.</param>
|
/// <returns>
|
/// an approximate normalization constant for the CMP distribution.
|
/// </returns>
|
static double Normalization(double lambda, double nu)
|
{
|
// Initialize Z with the first two terms.
|
var z = 1.0 + lambda;
|
|
// Remembers the last term added.
|
var t = lambda;
|
|
// Start adding more terms until convergence.
|
for (var i = 2; i < 1000; i++)
|
{
|
// The new addition for term i.
|
var e = lambda/Math.Pow(i, nu);
|
|
// The new term.
|
t = t*e;
|
|
// The updated normalization constant.
|
z = z + t;
|
|
// The stopping criterion.
|
if (e < 1)
|
{
|
if (t/(1 - e)/z < Tolerance)
|
{
|
break;
|
}
|
}
|
}
|
|
return z;
|
}
|
|
/// <summary>
|
/// Returns one trials from the distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="lambda">The lambda (λ) parameter. Range: λ > 0.</param>
|
/// <param name="nu">The rate of decay (ν) parameter. Range: ν ≥ 0.</param>
|
/// <param name="z">The z parameter.</param>
|
/// <returns>
|
/// One sample from the distribution implied by <paramref name="lambda"/>, <paramref name="nu"/>, and <paramref name="z"/>.
|
/// </returns>
|
static int SampleUnchecked(System.Random rnd, double lambda, double nu, double z)
|
{
|
var u = rnd.NextDouble();
|
var p = 1.0/z;
|
var cdf = p;
|
var i = 0;
|
|
while (u > cdf)
|
{
|
i++;
|
p = p*lambda/Math.Pow(i, nu);
|
cdf += p;
|
}
|
|
return i;
|
}
|
|
static void SamplesUnchecked(System.Random rnd, int[] values, double lambda, double nu, double z)
|
{
|
var uniform = rnd.NextDoubles(values.Length);
|
CommonParallel.For(0, values.Length, 4096, (a, b) =>
|
{
|
for (int i = a; i < b; i++)
|
{
|
var u = uniform[i];
|
var p = 1.0/z;
|
var cdf = p;
|
var k = 0;
|
while (u > cdf)
|
{
|
k++;
|
p = p*lambda/Math.Pow(k, nu);
|
cdf += p;
|
}
|
|
values[i] = k;
|
}
|
});
|
}
|
|
static IEnumerable<int> SamplesUnchecked(System.Random rnd, double lambda, double nu, double z)
|
{
|
while (true)
|
{
|
yield return SampleUnchecked(rnd, lambda, nu, z);
|
}
|
}
|
|
/// <summary>
|
/// Samples a Conway-Maxwell-Poisson distributed random variable.
|
/// </summary>
|
/// <returns>a sample from the distribution.</returns>
|
public int Sample()
|
{
|
return SampleUnchecked(_random, _lambda, _nu, Z);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
public void Samples(int[] values)
|
{
|
SamplesUnchecked(_random, values, _lambda, _nu, Z);
|
}
|
|
/// <summary>
|
/// Samples a sequence of a Conway-Maxwell-Poisson distributed random variables.
|
/// </summary>
|
/// <returns>
|
/// a sequence of samples from a Conway-Maxwell-Poisson distribution.
|
/// </returns>
|
public IEnumerable<int> Samples()
|
{
|
return SamplesUnchecked(_random, _lambda, _nu, Z);
|
}
|
|
/// <summary>
|
/// Samples a random variable.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="lambda">The lambda (λ) parameter. Range: λ > 0.</param>
|
/// <param name="nu">The rate of decay (ν) parameter. Range: ν ≥ 0.</param>
|
public static int Sample(System.Random rnd, double lambda, double nu)
|
{
|
if (!(lambda > 0.0 && nu >= 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
var z = Normalization(lambda, nu);
|
return SampleUnchecked(rnd, lambda, nu, z);
|
}
|
|
/// <summary>
|
/// Samples a sequence of this random variable.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="lambda">The lambda (λ) parameter. Range: λ > 0.</param>
|
/// <param name="nu">The rate of decay (ν) parameter. Range: ν ≥ 0.</param>
|
public static IEnumerable<int> Samples(System.Random rnd, double lambda, double nu)
|
{
|
if (!(lambda > 0.0 && nu >= 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
var z = Normalization(lambda, nu);
|
return SamplesUnchecked(rnd, lambda, nu, z);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="values">The array to fill with the samples.</param>
|
/// <param name="lambda">The lambda (λ) parameter. Range: λ > 0.</param>
|
/// <param name="nu">The rate of decay (ν) parameter. Range: ν ≥ 0.</param>
|
public static void Samples(System.Random rnd, int[] values, double lambda, double nu)
|
{
|
if (!(lambda > 0.0 && nu >= 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
var z = Normalization(lambda, nu);
|
SamplesUnchecked(rnd, values, lambda, nu, z);
|
}
|
|
/// <summary>
|
/// Samples a random variable.
|
/// </summary>
|
/// <param name="lambda">The lambda (λ) parameter. Range: λ > 0.</param>
|
/// <param name="nu">The rate of decay (ν) parameter. Range: ν ≥ 0.</param>
|
public static int Sample(double lambda, double nu)
|
{
|
if (!(lambda > 0.0 && nu >= 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
var z = Normalization(lambda, nu);
|
return SampleUnchecked(SystemRandomSource.Default, lambda, nu, z);
|
}
|
|
/// <summary>
|
/// Samples a sequence of this random variable.
|
/// </summary>
|
/// <param name="lambda">The lambda (λ) parameter. Range: λ > 0.</param>
|
/// <param name="nu">The rate of decay (ν) parameter. Range: ν ≥ 0.</param>
|
public static IEnumerable<int> Samples(double lambda, double nu)
|
{
|
if (!(lambda > 0.0 && nu >= 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
var z = Normalization(lambda, nu);
|
return SamplesUnchecked(SystemRandomSource.Default, lambda, nu, z);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
/// <param name="values">The array to fill with the samples.</param>
|
/// <param name="lambda">The lambda (λ) parameter. Range: λ > 0.</param>
|
/// <param name="nu">The rate of decay (ν) parameter. Range: ν ≥ 0.</param>
|
public static void Samples(int[] values, double lambda, double nu)
|
{
|
if (!(lambda > 0.0 && nu >= 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
var z = Normalization(lambda, nu);
|
SamplesUnchecked(SystemRandomSource.Default, values, lambda, nu, z);
|
}
|
}
|
}
|