// <copyright file="InverseGaussian.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2019 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using IStation.Numerics.Random;
|
using IStation.Numerics.Statistics;
|
using System;
|
using System.Collections.Generic;
|
using System.Linq;
|
|
namespace IStation.Numerics.Distributions
|
{
|
public class InverseGaussian : IContinuousDistribution
|
{
|
System.Random _random;
|
|
/// <summary>
|
/// Gets the mean (μ) of the distribution. Range: μ > 0.
|
/// </summary>
|
public double Mu { get; }
|
|
/// <summary>
|
/// Gets the shape (λ) of the distribution. Range: λ > 0.
|
/// </summary>
|
public double Lambda { get; }
|
|
/// <summary>
|
/// Initializes a new instance of the InverseGaussian class.
|
/// </summary>
|
/// <param name="mu">The mean (μ) of the distribution. Range: μ > 0.</param>
|
/// <param name="lambda">The shape (λ) of the distribution. Range: λ > 0.</param>
|
/// <param name="randomSource">The random number generator which is used to draw random samples.</param>
|
public InverseGaussian(double mu, double lambda, System.Random randomSource = null)
|
{
|
if (!IsValidParameterSet(mu, lambda))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
_random = randomSource ?? SystemRandomSource.Default;
|
Mu = mu;
|
Lambda = lambda;
|
}
|
|
/// <summary>
|
/// A string representation of the distribution.
|
/// </summary>
|
/// <returns>a string representation of the distribution.</returns>
|
public override string ToString()
|
{
|
return $"InverseGaussian(μ = {Mu}, λ = {Lambda})";
|
}
|
|
/// <summary>
|
/// Tests whether the provided values are valid parameters for this distribution.
|
/// </summary>
|
/// <param name="mu">The mean (μ) of the distribution. Range: μ > 0.</param>
|
/// <param name="lambda">The shape (λ) of the distribution. Range: λ > 0.</param>
|
public static bool IsValidParameterSet(double mu, double lambda)
|
{
|
var allFinite = mu.IsFinite() && lambda.IsFinite();
|
return allFinite && mu > 0.0 && lambda > 0.0;
|
}
|
|
/// <summary>
|
/// Gets the random number generator which is used to draw random samples.
|
/// </summary>
|
public System.Random RandomSource
|
{
|
get => _random;
|
set => _random = value ?? SystemRandomSource.Default;
|
}
|
|
/// <summary>
|
/// Gets the mean of the Inverse Gaussian distribution.
|
/// </summary>
|
public double Mean => Mu;
|
|
/// <summary>
|
/// Gets the variance of the Inverse Gaussian distribution.
|
/// </summary>
|
public double Variance => Math.Pow(Mu, 3) / Lambda;
|
|
/// <summary>
|
/// Gets the standard deviation of the Inverse Gaussian distribution.
|
/// </summary>
|
public double StdDev => Math.Sqrt(Variance);
|
|
/// <summary>
|
/// Gets the median of the Inverse Gaussian distribution.
|
/// No closed form analytical expression exists, so this value is approximated numerically and can throw an exception.
|
/// </summary>
|
public double Median => InvCDF(0.5);
|
|
/// <summary>
|
/// Gets the minimum of the Inverse Gaussian distribution.
|
/// </summary>
|
public double Minimum => 0.0;
|
|
/// <summary>
|
/// Gets the maximum of the Inverse Gaussian distribution.
|
/// </summary>
|
public double Maximum => double.PositiveInfinity;
|
|
/// <summary>
|
/// Gets the skewness of the Inverse Gaussian distribution.
|
/// </summary>
|
public double Skewness => 3 * Math.Sqrt(Mu / Lambda);
|
|
/// <summary>
|
/// Gets the kurtosis of the Inverse Gaussian distribution.
|
/// </summary>
|
public double Kurtosis => 15 * Mu / Lambda;
|
|
/// <summary>
|
/// Gets the mode of the Inverse Gaussian distribution.
|
/// </summary>
|
public double Mode => Mu * (Math.Sqrt(1 + (9 * Mu * Mu) / (4 * Lambda * Lambda)) - (3 * Mu) / (2 * Lambda));
|
|
/// <summary>
|
/// Gets the entropy of the Inverse Gaussian distribution (currently not supported).
|
/// </summary>
|
public double Entropy => throw new NotSupportedException();
|
|
/// <summary>
|
/// Generates a sample from the inverse Gaussian distribution.
|
/// </summary>
|
/// <returns>a sample from the distribution.</returns>
|
public double Sample()
|
{
|
return SampleUnchecked(_random, Mu, Lambda);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
/// <param name="values">The array to fill with the samples.</param>
|
public void Samples(double[] values)
|
{
|
SamplesUnchecked(_random, values, Mu, Lambda);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the inverse Gaussian distribution.
|
/// </summary>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public IEnumerable<double> Samples()
|
{
|
return SamplesUnchecked(_random, Mu, Lambda);
|
}
|
|
/// <summary>
|
/// Generates a sample from the inverse Gaussian distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="mu">The mean (μ) of the distribution. Range: μ > 0.</param>
|
/// <param name="lambda">The shape (λ) of the distribution. Range: λ > 0.</param>
|
/// <returns>a sample from the distribution.</returns>
|
public static double Sample(System.Random rnd, double mu, double lambda)
|
{
|
if (!IsValidParameterSet(mu, lambda))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
return SampleUnchecked(rnd, mu, lambda);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="values">The array to fill with the samples.</param>
|
/// <param name="mu">The mean (μ) of the distribution. Range: μ > 0.</param>
|
/// <param name="lambda">The shape (λ) of the distribution. Range: λ > 0.</param>
|
public static void Samples(System.Random rnd, double[] values, double mu, double lambda)
|
{
|
if (!IsValidParameterSet(mu, lambda))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
SamplesUnchecked(rnd, values, mu, lambda);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the Burr distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="mu">The mean (μ) of the distribution. Range: μ > 0.</param>
|
/// <param name="lambda">The shape (λ) of the distribution. Range: λ > 0.</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static IEnumerable<double> Samples(System.Random rnd, double mu, double lambda)
|
{
|
if (!IsValidParameterSet(mu, lambda))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
return SamplesUnchecked(rnd, mu, lambda);
|
}
|
|
internal static double SampleUnchecked(System.Random rnd, double mu, double lambda)
|
{
|
double v = IStation.Numerics.Distributions.Normal.Sample(rnd, 0, 1);
|
double test = rnd.NextDouble();
|
return InverseGaussianSampleImpl(mu, lambda, v, test);
|
}
|
|
internal static void SamplesUnchecked(System.Random rnd, double[] values, double mu, double lambda)
|
{
|
if (values.Length == 0)
|
{
|
return;
|
}
|
double[] v = new double[values.Length];
|
IStation.Numerics.Distributions.Normal.Samples(rnd, v, 0, 1);
|
double[] test = rnd.NextDoubles(values.Length);
|
for (var j = 0; j < values.Length; ++j)
|
{
|
values[j] = InverseGaussianSampleImpl(mu, lambda, v[j], test[j]);
|
}
|
}
|
|
internal static IEnumerable<double> SamplesUnchecked(System.Random rnd, double mu, double lambda)
|
{
|
while (true)
|
{
|
yield return SampleUnchecked(rnd, mu, lambda);
|
}
|
}
|
|
internal static double InverseGaussianSampleImpl(double mu, double lambda, double normalSample, double uniformSample)
|
{
|
double y = normalSample * normalSample;
|
double x = mu + (mu * mu * y) / (2 * lambda) - (mu / (2 * lambda)) * Math.Sqrt(4 * mu * lambda * y + mu * mu * y * y);
|
if (uniformSample <= mu / (mu + x))
|
return x;
|
else
|
return mu * mu / x;
|
}
|
|
/// <summary>
|
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
|
/// </summary>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <returns>the density at <paramref name="x"/>.</returns>
|
/// <seealso cref="PDF"/>
|
public double Density(double x)
|
{
|
return DensityImpl(Mu, Lambda, x);
|
}
|
|
/// <summary>
|
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the log density.</param>
|
/// <returns>the log density at <paramref name="x"/>.</returns>
|
/// <seealso cref="PDFLn"/>
|
public double DensityLn(double x)
|
{
|
return DensityLnImpl(Mu, Lambda, x);
|
}
|
|
/// <summary>
|
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
|
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
|
/// <seealso cref="CDF"/>
|
public double CumulativeDistribution(double x)
|
{
|
return CumulativeDistributionImpl(Mu, Lambda, x);
|
}
|
|
/// <summary>
|
/// Computes the inverse cumulative distribution (CDF) of the distribution at p, i.e. solving for P(X ≤ x) = p.
|
/// </summary>
|
/// <param name="p">The location at which to compute the inverse cumulative distribution function.</param>
|
/// <returns>the inverse cumulative distribution at location <paramref name="p"/>.</returns>
|
public double InvCDF(double p)
|
{
|
Func<double, double> equationToSolve = (x) => CumulativeDistribution(x) - p;
|
if (RootFinding.NewtonRaphson.TryFindRoot(equationToSolve, Density, Mode, 0, double.PositiveInfinity, 1e-8, 100, out double quantile))
|
return quantile;
|
else
|
throw new NonConvergenceException("Numerical estimation of the statistic has failed. The used solver did not succeed in finding a root.");
|
}
|
|
/// <summary>
|
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
|
/// </summary>
|
/// <param name="mu">The mean (μ) of the distribution. Range: μ > 0.</param>
|
/// <param name="lambda">The shape (λ) of the distribution. Range: λ > 0.</param>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <returns>the density at <paramref name="x"/>.</returns>
|
/// <seealso cref="Density"/>
|
public static double PDF(double mu, double lambda, double x)
|
{
|
if (!IsValidParameterSet(mu, lambda))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
return DensityImpl(mu, lambda, x);
|
}
|
|
/// <summary>
|
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
|
/// </summary>
|
/// <param name="mu">The mean (μ) of the distribution. Range: μ > 0.</param>
|
/// <param name="lambda">The shape (λ) of the distribution. Range: λ > 0.</param>
|
/// <param name="x">The location at which to compute the log density.</param>
|
/// <returns>the log density at <paramref name="x"/>.</returns>
|
/// <seealso cref="DensityLn"/>
|
public static double PDFLn(double mu, double lambda, double x)
|
{
|
if (!IsValidParameterSet(mu, lambda))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
return DensityLnImpl(mu, lambda, x);
|
}
|
|
/// <summary>
|
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
|
/// </summary>
|
/// <param name="mu">The mean (μ) of the distribution. Range: μ > 0.</param>
|
/// <param name="lambda">The shape (λ) of the distribution. Range: λ > 0.</param>
|
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
|
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
|
/// <seealso cref="CumulativeDistribution"/>
|
public static double CDF(double mu, double lambda, double x)
|
{
|
if (!IsValidParameterSet(mu, lambda))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
return CumulativeDistributionImpl(mu, lambda, x);
|
}
|
|
/// <summary>
|
/// Computes the inverse cumulative distribution (CDF) of the distribution at p, i.e. solving for P(X ≤ x) = p.
|
/// </summary>
|
/// <param name="mu">The mean (μ) of the distribution. Range: μ > 0.</param>
|
/// <param name="lambda">The shape (λ) of the distribution. Range: λ > 0.</param>
|
/// <param name="p">The location at which to compute the inverse cumulative distribution function.</param>
|
/// <returns>the inverse cumulative distribution at location <paramref name="p"/>.</returns>
|
/// <seealso cref="CumulativeDistribution"/>
|
public static double ICDF(double mu, double lambda, double p)
|
{
|
if (!IsValidParameterSet(mu, lambda))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
var igDist = new InverseGaussian(mu, lambda);
|
return igDist.InvCDF(p);
|
}
|
|
/// <summary>
|
/// Estimates the Inverse Gaussian parameters from sample data with maximum-likelihood.
|
/// </summary>
|
/// <param name="samples">The samples to estimate the distribution parameters from.</param>
|
/// <param name="randomSource">The random number generator which is used to draw random samples. Optional, can be null.</param>
|
/// <returns>An Inverse Gaussian distribution.</returns>
|
public static InverseGaussian Estimate(IEnumerable<double> samples, System.Random randomSource = null)
|
{
|
var sampleVec = samples.ToArray();
|
var muHat = sampleVec.Mean();
|
var lambdahat = 1 / (1 / samples.HarmonicMean() - 1 / muHat);
|
return new InverseGaussian(muHat, lambdahat, randomSource);
|
}
|
|
internal static double DensityImpl(double mu, double lambda, double x)
|
{
|
return Math.Sqrt(lambda / (2 * Math.PI * Math.Pow(x, 3))) * Math.Exp(-((lambda * Math.Pow(x - mu, 2)) / (2 * mu * mu * x)));
|
}
|
|
internal static double DensityLnImpl(double mu, double lambda, double x)
|
{
|
return Math.Log(Math.Sqrt(lambda / (2 * Math.PI * Math.Pow(x, 3)))) - ((lambda * Math.Pow(x - mu, 2)) / (2 * mu * mu * x));
|
}
|
|
internal static double CumulativeDistributionImpl(double mu, double lambda, double x)
|
{
|
return Normal.CDF(0, 1, Math.Sqrt(lambda / x) * (x / mu - 1)) + Math.Exp(2 * lambda / mu) * Normal.CDF(0, 1, -Math.Sqrt(lambda / x) * (x / mu + 1));
|
}
|
}
|
}
|