// <copyright file="LogNormal.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using System.Linq;
|
using IStation.Numerics.Random;
|
using IStation.Numerics.Statistics;
|
using IStation.Numerics.Threading;
|
|
namespace IStation.Numerics.Distributions
|
{
|
/// <summary>
|
/// Continuous Univariate Log-Normal distribution.
|
/// For details about this distribution, see
|
/// <a href="http://en.wikipedia.org/wiki/Log-normal_distribution">Wikipedia - Log-Normal distribution</a>.
|
/// </summary>
|
public class LogNormal : IContinuousDistribution
|
{
|
System.Random _random;
|
|
readonly double _mu;
|
readonly double _sigma;
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="LogNormal"/> class.
|
/// The distribution will be initialized with the default <seealso cref="System.Random"/>
|
/// random number generator.
|
/// </summary>
|
/// <param name="mu">The log-scale (μ) of the logarithm of the distribution.</param>
|
/// <param name="sigma">The shape (σ) of the logarithm of the distribution. Range: σ ≥ 0.</param>
|
public LogNormal(double mu, double sigma)
|
{
|
if (!IsValidParameterSet(mu, sigma))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = SystemRandomSource.Default;
|
_mu = mu;
|
_sigma = sigma;
|
}
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="LogNormal"/> class.
|
/// The distribution will be initialized with the default <seealso cref="System.Random"/>
|
/// random number generator.
|
/// </summary>
|
/// <param name="mu">The log-scale (μ) of the distribution.</param>
|
/// <param name="sigma">The shape (σ) of the distribution. Range: σ ≥ 0.</param>
|
/// <param name="randomSource">The random number generator which is used to draw random samples.</param>
|
public LogNormal(double mu, double sigma, System.Random randomSource)
|
{
|
if (!IsValidParameterSet(mu, sigma))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = randomSource ?? SystemRandomSource.Default;
|
_mu = mu;
|
_sigma = sigma;
|
}
|
|
/// <summary>
|
/// Constructs a log-normal distribution with the desired mu and sigma parameters.
|
/// </summary>
|
/// <param name="mu">The log-scale (μ) of the distribution.</param>
|
/// <param name="sigma">The shape (σ) of the distribution. Range: σ ≥ 0.</param>
|
/// <param name="randomSource">The random number generator which is used to draw random samples. Optional, can be null.</param>
|
/// <returns>A log-normal distribution.</returns>
|
public static LogNormal WithMuSigma(double mu, double sigma, System.Random randomSource = null)
|
{
|
return new LogNormal(mu, sigma, randomSource);
|
}
|
|
/// <summary>
|
/// Constructs a log-normal distribution with the desired mean and variance.
|
/// </summary>
|
/// <param name="mean">The mean of the log-normal distribution.</param>
|
/// <param name="var">The variance of the log-normal distribution.</param>
|
/// <param name="randomSource">The random number generator which is used to draw random samples. Optional, can be null.</param>
|
/// <returns>A log-normal distribution.</returns>
|
public static LogNormal WithMeanVariance(double mean, double var, System.Random randomSource = null)
|
{
|
var sigma2 = Math.Log(var/(mean*mean) + 1.0);
|
return new LogNormal(Math.Log(mean) - sigma2/2.0, Math.Sqrt(sigma2), randomSource);
|
}
|
|
/// <summary>
|
/// Estimates the log-normal distribution parameters from sample data with maximum-likelihood.
|
/// </summary>
|
/// <param name="samples">The samples to estimate the distribution parameters from.</param>
|
/// <param name="randomSource">The random number generator which is used to draw random samples. Optional, can be null.</param>
|
/// <returns>A log-normal distribution.</returns>
|
/// <remarks>MATLAB: lognfit</remarks>
|
public static LogNormal Estimate(IEnumerable<double> samples, System.Random randomSource = null)
|
{
|
var muSigma = samples.Select(s => Math.Log(s)).MeanStandardDeviation();
|
return new LogNormal(muSigma.Item1, muSigma.Item2, randomSource);
|
}
|
|
/// <summary>
|
/// A string representation of the distribution.
|
/// </summary>
|
/// <returns>a string representation of the distribution.</returns>
|
public override string ToString()
|
{
|
return $"LogNormal(μ = {_mu}, σ = {_sigma})";
|
}
|
|
/// <summary>
|
/// Tests whether the provided values are valid parameters for this distribution.
|
/// </summary>
|
/// <param name="mu">The log-scale (μ) of the distribution.</param>
|
/// <param name="sigma">The shape (σ) of the distribution. Range: σ ≥ 0.</param>
|
public static bool IsValidParameterSet(double mu, double sigma)
|
{
|
return sigma >= 0.0 && !double.IsNaN(mu);
|
}
|
|
/// <summary>
|
/// Gets the log-scale (μ) (mean of the logarithm) of the distribution.
|
/// </summary>
|
public double Mu => _mu;
|
|
/// <summary>
|
/// Gets the shape (σ) (standard deviation of the logarithm) of the distribution. Range: σ ≥ 0.
|
/// </summary>
|
public double Sigma => _sigma;
|
|
/// <summary>
|
/// Gets or sets the random number generator which is used to draw random samples.
|
/// </summary>
|
public System.Random RandomSource
|
{
|
get => _random;
|
set => _random = value ?? SystemRandomSource.Default;
|
}
|
|
/// <summary>
|
/// Gets the mu of the log-normal distribution.
|
/// </summary>
|
public double Mean => Math.Exp(_mu + (_sigma*_sigma/2.0));
|
|
/// <summary>
|
/// Gets the variance of the log-normal distribution.
|
/// </summary>
|
public double Variance
|
{
|
get
|
{
|
var sigma2 = _sigma*_sigma;
|
return (Math.Exp(sigma2) - 1.0)*Math.Exp(_mu + _mu + sigma2);
|
}
|
}
|
|
/// <summary>
|
/// Gets the standard deviation of the log-normal distribution.
|
/// </summary>
|
public double StdDev
|
{
|
get
|
{
|
var sigma2 = _sigma*_sigma;
|
return Math.Sqrt((Math.Exp(sigma2) - 1.0)*Math.Exp(_mu + _mu + sigma2));
|
}
|
}
|
|
/// <summary>
|
/// Gets the entropy of the log-normal distribution.
|
/// </summary>
|
public double Entropy => 0.5 + Math.Log(_sigma) + _mu + Constants.LogSqrt2Pi;
|
|
/// <summary>
|
/// Gets the skewness of the log-normal distribution.
|
/// </summary>
|
public double Skewness
|
{
|
get
|
{
|
var expsigma2 = Math.Exp(_sigma*_sigma);
|
return (expsigma2 + 2.0)*Math.Sqrt(expsigma2 - 1);
|
}
|
}
|
|
/// <summary>
|
/// Gets the mode of the log-normal distribution.
|
/// </summary>
|
public double Mode => Math.Exp(_mu - (_sigma*_sigma));
|
|
/// <summary>
|
/// Gets the median of the log-normal distribution.
|
/// </summary>
|
public double Median => Math.Exp(_mu);
|
|
/// <summary>
|
/// Gets the minimum of the log-normal distribution.
|
/// </summary>
|
public double Minimum => 0.0;
|
|
/// <summary>
|
/// Gets the maximum of the log-normal distribution.
|
/// </summary>
|
public double Maximum => double.PositiveInfinity;
|
|
/// <summary>
|
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
|
/// </summary>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <returns>the density at <paramref name="x"/>.</returns>
|
/// <seealso cref="PDF"/>
|
public double Density(double x)
|
{
|
if (x < 0.0)
|
{
|
return 0.0;
|
}
|
|
var a = (Math.Log(x) - _mu)/_sigma;
|
return Math.Exp(-0.5*a*a)/(x*_sigma*Constants.Sqrt2Pi);
|
}
|
|
/// <summary>
|
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the log density.</param>
|
/// <returns>the log density at <paramref name="x"/>.</returns>
|
/// <seealso cref="PDFLn"/>
|
public double DensityLn(double x)
|
{
|
if (x < 0.0)
|
{
|
return double.NegativeInfinity;
|
}
|
|
var a = (Math.Log(x) - _mu)/_sigma;
|
return (-0.5*a*a) - Math.Log(x*_sigma) - Constants.LogSqrt2Pi;
|
}
|
|
/// <summary>
|
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
|
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
|
/// <seealso cref="CDF"/>
|
public double CumulativeDistribution(double x)
|
{
|
return x < 0.0 ? 0.0
|
: 0.5*SpecialFunctions.Erfc((_mu - Math.Log(x))/(_sigma*Constants.Sqrt2));
|
}
|
|
/// <summary>
|
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
|
/// at the given probability. This is also known as the quantile or percent point function.
|
/// </summary>
|
/// <param name="p">The location at which to compute the inverse cumulative density.</param>
|
/// <returns>the inverse cumulative density at <paramref name="p"/>.</returns>
|
/// <seealso cref="InvCDF"/>
|
public double InverseCumulativeDistribution(double p)
|
{
|
return p <= 0.0 ? 0.0 : p >= 1.0 ? double.PositiveInfinity
|
: Math.Exp(_mu - _sigma*Constants.Sqrt2*SpecialFunctions.ErfcInv(2.0*p));
|
}
|
|
/// <summary>
|
/// Generates a sample from the log-normal distribution using the <i>Box-Muller</i> algorithm.
|
/// </summary>
|
/// <returns>a sample from the distribution.</returns>
|
public double Sample()
|
{
|
return SampleUnchecked(_random, _mu, _sigma);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
public void Samples(double[] values)
|
{
|
SamplesUnchecked(_random, values, _mu, _sigma);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the log-normal distribution using the <i>Box-Muller</i> algorithm.
|
/// </summary>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public IEnumerable<double> Samples()
|
{
|
return SamplesUnchecked(_random, _mu, _sigma);
|
}
|
|
static double SampleUnchecked(System.Random rnd, double mu, double sigma)
|
{
|
return Math.Exp(Normal.SampleUnchecked(rnd, mu, sigma));
|
}
|
|
static IEnumerable<double> SamplesUnchecked(System.Random rnd, double mu, double sigma)
|
{
|
return Normal.SamplesUnchecked(rnd, mu, sigma).Select(Math.Exp);
|
}
|
|
static void SamplesUnchecked(System.Random rnd, double[] values, double mu, double sigma)
|
{
|
Normal.SamplesUnchecked(rnd, values, mu, sigma);
|
CommonParallel.For(0, values.Length, 4096, (a, b) =>
|
{
|
for (int i = a; i < b; i++)
|
{
|
values[i] = Math.Exp(values[i]);
|
}
|
});
|
}
|
|
/// <summary>
|
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
|
/// </summary>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <param name="mu">The log-scale (μ) of the distribution.</param>
|
/// <param name="sigma">The shape (σ) of the distribution. Range: σ ≥ 0.</param>
|
/// <returns>the density at <paramref name="x"/>.</returns>
|
/// <seealso cref="Density"/>
|
/// <remarks>MATLAB: lognpdf</remarks>
|
public static double PDF(double mu, double sigma, double x)
|
{
|
if (sigma < 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
if (x < 0.0)
|
{
|
return 0.0;
|
}
|
|
var a = (Math.Log(x) - mu)/sigma;
|
return Math.Exp(-0.5*a*a)/(x*sigma*Constants.Sqrt2Pi);
|
}
|
|
/// <summary>
|
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <param name="mu">The log-scale (μ) of the distribution.</param>
|
/// <param name="sigma">The shape (σ) of the distribution. Range: σ ≥ 0.</param>
|
/// <returns>the log density at <paramref name="x"/>.</returns>
|
/// <seealso cref="DensityLn"/>
|
public static double PDFLn(double mu, double sigma, double x)
|
{
|
if (sigma < 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
if (x < 0.0)
|
{
|
return double.NegativeInfinity;
|
}
|
|
var a = (Math.Log(x) - mu)/sigma;
|
return (-0.5*a*a) - Math.Log(x*sigma) - Constants.LogSqrt2Pi;
|
}
|
|
/// <summary>
|
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
|
/// <param name="mu">The log-scale (μ) of the distribution.</param>
|
/// <param name="sigma">The shape (σ) of the distribution. Range: σ ≥ 0.</param>
|
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
|
/// <seealso cref="CumulativeDistribution"/>
|
/// <remarks>MATLAB: logncdf</remarks>
|
public static double CDF(double mu, double sigma, double x)
|
{
|
if (sigma < 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return x < 0.0 ? 0.0
|
: 0.5*(1.0 + SpecialFunctions.Erf((Math.Log(x) - mu)/(sigma*Constants.Sqrt2)));
|
}
|
|
/// <summary>
|
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
|
/// at the given probability. This is also known as the quantile or percent point function.
|
/// </summary>
|
/// <param name="p">The location at which to compute the inverse cumulative density.</param>
|
/// <param name="mu">The log-scale (μ) of the distribution.</param>
|
/// <param name="sigma">The shape (σ) of the distribution. Range: σ ≥ 0.</param>
|
/// <returns>the inverse cumulative density at <paramref name="p"/>.</returns>
|
/// <seealso cref="InverseCumulativeDistribution"/>
|
/// <remarks>MATLAB: logninv</remarks>
|
public static double InvCDF(double mu, double sigma, double p)
|
{
|
if (sigma < 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return p <= 0.0 ? 0.0 : p >= 1.0 ? double.PositiveInfinity
|
: Math.Exp(mu - sigma*Constants.Sqrt2*SpecialFunctions.ErfcInv(2.0*p));
|
}
|
|
/// <summary>
|
/// Generates a sample from the log-normal distribution using the <i>Box-Muller</i> algorithm.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="mu">The log-scale (μ) of the distribution.</param>
|
/// <param name="sigma">The shape (σ) of the distribution. Range: σ ≥ 0.</param>
|
/// <returns>a sample from the distribution.</returns>
|
public static double Sample(System.Random rnd, double mu, double sigma)
|
{
|
if (sigma < 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SampleUnchecked(rnd, mu, sigma);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the log-normal distribution using the <i>Box-Muller</i> algorithm.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="mu">The log-scale (μ) of the distribution.</param>
|
/// <param name="sigma">The shape (σ) of the distribution. Range: σ ≥ 0.</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static IEnumerable<double> Samples(System.Random rnd, double mu, double sigma)
|
{
|
if (sigma < 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SamplesUnchecked(rnd, mu, sigma);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="values">The array to fill with the samples.</param>
|
/// <param name="mu">The log-scale (μ) of the distribution.</param>
|
/// <param name="sigma">The shape (σ) of the distribution. Range: σ ≥ 0.</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static void Samples(System.Random rnd, double[] values, double mu, double sigma)
|
{
|
if (sigma < 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
SamplesUnchecked(rnd, values, mu, sigma);
|
}
|
|
/// <summary>
|
/// Generates a sample from the log-normal distribution using the <i>Box-Muller</i> algorithm.
|
/// </summary>
|
/// <param name="mu">The log-scale (μ) of the distribution.</param>
|
/// <param name="sigma">The shape (σ) of the distribution. Range: σ ≥ 0.</param>
|
/// <returns>a sample from the distribution.</returns>
|
public static double Sample(double mu, double sigma)
|
{
|
if (sigma < 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SampleUnchecked(SystemRandomSource.Default, mu, sigma);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the log-normal distribution using the <i>Box-Muller</i> algorithm.
|
/// </summary>
|
/// <param name="mu">The log-scale (μ) of the distribution.</param>
|
/// <param name="sigma">The shape (σ) of the distribution. Range: σ ≥ 0.</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static IEnumerable<double> Samples(double mu, double sigma)
|
{
|
if (sigma < 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SamplesUnchecked(SystemRandomSource.Default, mu, sigma);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
/// <param name="values">The array to fill with the samples.</param>
|
/// <param name="mu">The log-scale (μ) of the distribution.</param>
|
/// <param name="sigma">The shape (σ) of the distribution. Range: σ ≥ 0.</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static void Samples(double[] values, double mu, double sigma)
|
{
|
if (sigma < 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
SamplesUnchecked(SystemRandomSource.Default, values, mu, sigma);
|
}
|
}
|
}
|