// <copyright file="MatrixNormal.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using IStation.Numerics.LinearAlgebra;
|
using IStation.Numerics.LinearAlgebra.Double;
|
using IStation.Numerics.Random;
|
|
namespace IStation.Numerics.Distributions
|
{
|
/// <summary>
|
/// Multivariate Matrix-valued Normal distributions. The distribution
|
/// is parameterized by a mean matrix (M), a covariance matrix for the rows (V) and a covariance matrix
|
/// for the columns (K). If the dimension of M is d-by-m then V is d-by-d and K is m-by-m.
|
/// <a href="http://en.wikipedia.org/wiki/Matrix_normal_distribution">Wikipedia - MatrixNormal distribution</a>.
|
/// </summary>
|
public class MatrixNormal : IDistribution
|
{
|
System.Random _random;
|
|
/// <summary>
|
/// The mean of the matrix normal distribution.
|
/// </summary>
|
readonly Matrix<double> _m;
|
|
/// <summary>
|
/// The covariance matrix for the rows.
|
/// </summary>
|
readonly Matrix<double> _v;
|
|
/// <summary>
|
/// The covariance matrix for the columns.
|
/// </summary>
|
readonly Matrix<double> _k;
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="MatrixNormal"/> class.
|
/// </summary>
|
/// <param name="m">The mean of the matrix normal.</param>
|
/// <param name="v">The covariance matrix for the rows.</param>
|
/// <param name="k">The covariance matrix for the columns.</param>
|
/// <exception cref="ArgumentOutOfRangeException">If the dimensions of the mean and two covariance matrices don't match.</exception>
|
public MatrixNormal(Matrix<double> m, Matrix<double> v, Matrix<double> k)
|
{
|
if (Control.CheckDistributionParameters && !IsValidParameterSet(m, v, k))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = SystemRandomSource.Default;
|
_m = m;
|
_v = v;
|
_k = k;
|
}
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="MatrixNormal"/> class.
|
/// </summary>
|
/// <param name="m">The mean of the matrix normal.</param>
|
/// <param name="v">The covariance matrix for the rows.</param>
|
/// <param name="k">The covariance matrix for the columns.</param>
|
/// <param name="randomSource">The random number generator which is used to draw random samples.</param>
|
/// <exception cref="ArgumentOutOfRangeException">If the dimensions of the mean and two covariance matrices don't match.</exception>
|
public MatrixNormal(Matrix<double> m, Matrix<double> v, Matrix<double> k, System.Random randomSource)
|
{
|
if (Control.CheckDistributionParameters && !IsValidParameterSet(m, v, k))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = randomSource ?? SystemRandomSource.Default;
|
_m = m;
|
_v = v;
|
_k = k;
|
}
|
|
/// <summary>
|
/// Returns a <see cref="System.String"/> that represents this instance.
|
/// </summary>
|
/// <returns>
|
/// A <see cref="System.String"/> that represents this instance.
|
/// </returns>
|
public override string ToString()
|
{
|
return $"MatrixNormal(Rows = {_m.RowCount}, Columns = {_m.ColumnCount})";
|
}
|
|
/// <summary>
|
/// Tests whether the provided values are valid parameters for this distribution.
|
/// </summary>
|
/// <param name="m">The mean of the matrix normal.</param>
|
/// <param name="v">The covariance matrix for the rows.</param>
|
/// <param name="k">The covariance matrix for the columns.</param>
|
public static bool IsValidParameterSet(Matrix<double> m, Matrix<double> v, Matrix<double> k)
|
{
|
var n = m.RowCount;
|
var p = m.ColumnCount;
|
if (v.ColumnCount != n || v.RowCount != n)
|
{
|
return false;
|
}
|
|
if (k.ColumnCount != p || k.RowCount != p)
|
{
|
return false;
|
}
|
|
for (var i = 0; i < v.RowCount; i++)
|
{
|
if (v.At(i, i) <= 0)
|
{
|
return false;
|
}
|
}
|
|
for (var i = 0; i < k.RowCount; i++)
|
{
|
if (k.At(i, i) <= 0)
|
{
|
return false;
|
}
|
}
|
|
return true;
|
}
|
|
/// <summary>
|
/// Gets the mean. (M)
|
/// </summary>
|
/// <value>The mean of the distribution.</value>
|
public Matrix<double> Mean => _m;
|
|
/// <summary>
|
/// Gets the row covariance. (V)
|
/// </summary>
|
/// <value>The row covariance.</value>
|
public Matrix<double> RowCovariance => _v;
|
|
/// <summary>
|
/// Gets the column covariance. (K)
|
/// </summary>
|
/// <value>The column covariance.</value>
|
public Matrix<double> ColumnCovariance => _k;
|
|
/// <summary>
|
/// Gets or sets the random number generator which is used to draw random samples.
|
/// </summary>
|
public System.Random RandomSource
|
{
|
get => _random;
|
set => _random = value ?? SystemRandomSource.Default;
|
}
|
|
/// <summary>
|
/// Evaluates the probability density function for the matrix normal distribution.
|
/// </summary>
|
/// <param name="x">The matrix at which to evaluate the density at.</param>
|
/// <returns>the density at <paramref name="x"/></returns>
|
/// <exception cref="ArgumentOutOfRangeException">If the argument does not have the correct dimensions.</exception>
|
public double Density(Matrix<double> x)
|
{
|
if (x.RowCount != _m.RowCount || x.ColumnCount != _m.ColumnCount)
|
{
|
throw Matrix.DimensionsDontMatch<ArgumentOutOfRangeException>(x, _m, "x");
|
}
|
|
var a = x - _m;
|
var cholV = _v.Cholesky();
|
var cholK = _k.Cholesky();
|
|
return Math.Exp(-0.5*cholK.Solve(a.Transpose()*cholV.Solve(a)).Trace())
|
/Math.Pow(2.0*Constants.Pi, x.RowCount*x.ColumnCount/2.0)
|
/Math.Pow(cholK.Determinant, x.RowCount/2.0)
|
/Math.Pow(cholV.Determinant, x.ColumnCount/2.0);
|
}
|
|
/// <summary>
|
/// Samples a matrix normal distributed random variable.
|
/// </summary>
|
/// <returns>A random number from this distribution.</returns>
|
public Matrix<double> Sample()
|
{
|
return Sample(_random, _m, _v, _k);
|
}
|
|
/// <summary>
|
/// Samples a matrix normal distributed random variable.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="m">The mean of the matrix normal.</param>
|
/// <param name="v">The covariance matrix for the rows.</param>
|
/// <param name="k">The covariance matrix for the columns.</param>
|
/// <exception cref="ArgumentOutOfRangeException">If the dimensions of the mean and two covariance matrices don't match.</exception>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static Matrix<double> Sample(System.Random rnd, Matrix<double> m, Matrix<double> v, Matrix<double> k)
|
{
|
if (Control.CheckDistributionParameters && !IsValidParameterSet(m, v, k))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
var n = m.RowCount;
|
var p = m.ColumnCount;
|
|
// Compute the Kronecker product of V and K, this is the covariance matrix for the stacked matrix.
|
var vki = v.KroneckerProduct(k.Inverse());
|
|
// Sample a vector valued random variable with VKi as the covariance.
|
var vector = SampleVectorNormal(rnd, new DenseVector(n*p), vki);
|
|
// Unstack the vector v and add the mean.
|
var r = m.Clone();
|
for (var i = 0; i < n; i++)
|
{
|
for (var j = 0; j < p; j++)
|
{
|
r.At(i, j, r.At(i, j) + vector[(j*n) + i]);
|
}
|
}
|
|
return r;
|
}
|
|
/// <summary>
|
/// Samples a vector normal distributed random variable.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="mean">The mean of the vector normal distribution.</param>
|
/// <param name="covariance">The covariance matrix of the vector normal distribution.</param>
|
/// <returns>a sequence of samples from defined distribution.</returns>
|
static Vector<double> SampleVectorNormal(System.Random rnd, Vector<double> mean, Matrix<double> covariance)
|
{
|
var chol = covariance.Cholesky();
|
|
// Sample a standard normal variable.
|
var v = Vector<double>.Build.Random(mean.Count, new Normal(rnd));
|
|
// Return the transformed variable.
|
return mean + (chol.Factor*v);
|
}
|
}
|
}
|