// <copyright file="NormalGamma.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using IStation.Numerics.Random;
|
|
namespace IStation.Numerics.Distributions
|
{
|
/// <summary>
|
/// This structure represents the type over which the <see cref="NormalGamma"/> distribution
|
/// is defined.
|
/// </summary>
|
public struct MeanPrecisionPair
|
{
|
/// <summary>
|
/// Initializes a new instance of the <see cref="MeanPrecisionPair"/> struct.
|
/// </summary>
|
/// <param name="m">The mean of the pair.</param>
|
/// <param name="p">The precision of the pair.</param>
|
public MeanPrecisionPair(double m, double p)
|
{
|
Mean = m;
|
Precision = p;
|
}
|
|
/// <summary>
|
/// Gets or sets the mean of the pair.
|
/// </summary>
|
public double Mean { get; set; }
|
|
/// <summary>
|
/// Gets or sets the precision of the pair.
|
/// </summary>
|
public double Precision { get; set; }
|
}
|
|
/// <summary>
|
/// Multivariate Normal-Gamma Distribution.
|
/// <para>The <see cref="NormalGamma"/> distribution is the conjugate prior distribution for the <see cref="Normal"/>
|
/// distribution. It specifies a prior over the mean and precision of the <see cref="Normal"/> distribution.</para>
|
/// <para>It is parameterized by four numbers: the mean location, the mean scale, the precision shape and the
|
/// precision inverse scale.</para>
|
/// <para>The distribution NG(mu, tau | mloc,mscale,psscale,pinvscale) = Normal(mu | mloc, 1/(mscale*tau)) * Gamma(tau | psscale,pinvscale).</para>
|
/// <para>The following degenerate cases are special: when the precision is known,
|
/// the precision shape will encode the value of the precision while the precision inverse scale is positive
|
/// infinity. When the mean is known, the mean location will encode the value of the mean while the scale
|
/// will be positive infinity. A completely degenerate NormalGamma distribution with known mean and precision is possible as well.</para>
|
/// <a href="http://en.wikipedia.org/wiki/Normal-gamma_distribution">Wikipedia - Normal-Gamma distribution</a>.
|
/// </summary>
|
public class NormalGamma : IDistribution
|
{
|
System.Random _random;
|
|
readonly double _meanLocation;
|
readonly double _meanScale;
|
readonly double _precisionShape;
|
readonly double _precisionInvScale;
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="NormalGamma"/> class.
|
/// </summary>
|
/// <param name="meanLocation">The location of the mean.</param>
|
/// <param name="meanScale">The scale of the mean.</param>
|
/// <param name="precisionShape">The shape of the precision.</param>
|
/// <param name="precisionInverseScale">The inverse scale of the precision.</param>
|
public NormalGamma(double meanLocation, double meanScale, double precisionShape, double precisionInverseScale)
|
{
|
if (Control.CheckDistributionParameters && !IsValidParameterSet(meanLocation, meanScale, precisionShape, precisionInverseScale))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = SystemRandomSource.Default;
|
_meanLocation = meanLocation;
|
_meanScale = meanScale;
|
_precisionShape = precisionShape;
|
_precisionInvScale = precisionInverseScale;
|
}
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="NormalGamma"/> class.
|
/// </summary>
|
/// <param name="meanLocation">The location of the mean.</param>
|
/// <param name="meanScale">The scale of the mean.</param>
|
/// <param name="precisionShape">The shape of the precision.</param>
|
/// <param name="precisionInverseScale">The inverse scale of the precision.</param>
|
/// <param name="randomSource">The random number generator which is used to draw random samples.</param>
|
public NormalGamma(double meanLocation, double meanScale, double precisionShape, double precisionInverseScale, System.Random randomSource)
|
{
|
if (Control.CheckDistributionParameters && !IsValidParameterSet(meanLocation, meanScale, precisionShape, precisionInverseScale))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = randomSource ?? SystemRandomSource.Default;
|
_meanLocation = meanLocation;
|
_meanScale = meanScale;
|
_precisionShape = precisionShape;
|
_precisionInvScale = precisionInverseScale;
|
}
|
|
/// <summary>
|
/// A string representation of the distribution.
|
/// </summary>
|
/// <returns>a string representation of the distribution.</returns>
|
public override string ToString()
|
{
|
return $"NormalGamma(Mean Location = {_meanLocation}, Mean Scale = {_meanScale}, Precision Shape = {_precisionShape}, Precision Inverse Scale = {_precisionInvScale})";
|
}
|
|
/// <summary>
|
/// Tests whether the provided values are valid parameters for this distribution.
|
/// </summary>
|
/// <param name="meanLocation">The location of the mean.</param>
|
/// <param name="meanScale">The scale of the mean.</param>
|
/// <param name="precShape">The shape of the precision.</param>
|
/// <param name="precInvScale">The inverse scale of the precision.</param>
|
public static bool IsValidParameterSet(double meanLocation, double meanScale, double precShape, double precInvScale)
|
{
|
return meanScale > 0.0 && precShape > 0.0 && precInvScale > 0.0 && !double.IsNaN(meanLocation);
|
}
|
|
/// <summary>
|
/// Gets the location of the mean.
|
/// </summary>
|
public double MeanLocation => _meanLocation;
|
|
/// <summary>
|
/// Gets the scale of the mean.
|
/// </summary>
|
public double MeanScale => _meanScale;
|
|
/// <summary>
|
/// Gets the shape of the precision.
|
/// </summary>
|
public double PrecisionShape => _precisionShape;
|
|
/// <summary>
|
/// Gets the inverse scale of the precision.
|
/// </summary>
|
public double PrecisionInverseScale => _precisionInvScale;
|
|
/// <summary>
|
/// Gets or sets the random number generator which is used to draw random samples.
|
/// </summary>
|
public System.Random RandomSource
|
{
|
get => _random;
|
set => _random = value ?? SystemRandomSource.Default;
|
}
|
|
/// <summary>
|
/// Returns the marginal distribution for the mean of the <c>NormalGamma</c> distribution.
|
/// </summary>
|
/// <returns>the marginal distribution for the mean of the <c>NormalGamma</c> distribution.</returns>
|
public StudentT MeanMarginal()
|
{
|
if (double.IsPositiveInfinity(_precisionInvScale))
|
{
|
return new StudentT(_meanLocation, 1.0/(_meanScale*_precisionShape), double.PositiveInfinity);
|
}
|
|
return new StudentT(_meanLocation, Math.Sqrt(_precisionInvScale/(_meanScale*_precisionShape)), 2.0*_precisionShape);
|
}
|
|
/// <summary>
|
/// Returns the marginal distribution for the precision of the <see cref="NormalGamma"/> distribution.
|
/// </summary>
|
/// <returns>The marginal distribution for the precision of the <see cref="NormalGamma"/> distribution/</returns>
|
public Gamma PrecisionMarginal()
|
{
|
return new Gamma(_precisionShape, _precisionInvScale);
|
}
|
|
/// <summary>
|
/// Gets the mean of the distribution.
|
/// </summary>
|
/// <value>The mean of the distribution.</value>
|
public MeanPrecisionPair Mean => double.IsPositiveInfinity(_precisionInvScale) ? new MeanPrecisionPair(_meanLocation, _precisionShape) : new MeanPrecisionPair(_meanLocation, _precisionShape/_precisionInvScale);
|
|
/// <summary>
|
/// Gets the variance of the distribution.
|
/// </summary>
|
/// <value>The mean of the distribution.</value>
|
public MeanPrecisionPair Variance => new MeanPrecisionPair(_precisionInvScale/(_meanScale*(_precisionShape - 1)), _precisionShape/Math.Sqrt(_precisionInvScale));
|
|
/// <summary>
|
/// Evaluates the probability density function for a NormalGamma distribution.
|
/// </summary>
|
/// <param name="mp">The mean/precision pair of the distribution</param>
|
/// <returns>Density value</returns>
|
public double Density(MeanPrecisionPair mp)
|
{
|
return Density(mp.Mean, mp.Precision);
|
}
|
|
/// <summary>
|
/// Evaluates the probability density function for a NormalGamma distribution.
|
/// </summary>
|
/// <param name="mean">The mean of the distribution</param>
|
/// <param name="prec">The precision of the distribution</param>
|
/// <returns>Density value</returns>
|
public double Density(double mean, double prec)
|
{
|
if (double.IsPositiveInfinity(_precisionInvScale) && _meanScale == 0.0)
|
{
|
throw new NotSupportedException();
|
}
|
|
if (double.IsPositiveInfinity(_precisionInvScale))
|
{
|
throw new NotSupportedException();
|
}
|
|
if (_meanScale <= 0.0)
|
{
|
throw new NotSupportedException();
|
}
|
|
if (_precisionShape > 160.0)
|
{
|
return Math.Exp(DensityLn(mean, prec));
|
}
|
|
// double e = -0.5 * prec * (mean - _meanLocation) * (mean - _meanLocation) - prec * _precisionInvScale;
|
// return Math.Pow(prec * _precisionInvScale, _precisionShape) * Math.Exp(e) / (Constants.Sqrt2Pi * Math.Sqrt(prec) * SpecialFunctions.Gamma(_precisionShape));
|
double e = -(0.5*prec*_meanScale*(mean - _meanLocation)*(mean - _meanLocation)) - (prec*_precisionInvScale);
|
return Math.Pow(prec*_precisionInvScale, _precisionShape)*Math.Exp(e)*Math.Sqrt(_meanScale)
|
/(Constants.Sqrt2Pi*Math.Sqrt(prec)*SpecialFunctions.Gamma(_precisionShape));
|
}
|
|
/// <summary>
|
/// Evaluates the log probability density function for a NormalGamma distribution.
|
/// </summary>
|
/// <param name="mp">The mean/precision pair of the distribution</param>
|
/// <returns>The log of the density value</returns>
|
public double DensityLn(MeanPrecisionPair mp)
|
{
|
return DensityLn(mp.Mean, mp.Precision);
|
}
|
|
/// <summary>
|
/// Evaluates the log probability density function for a NormalGamma distribution.
|
/// </summary>
|
/// <param name="mean">The mean of the distribution</param>
|
/// <param name="prec">The precision of the distribution</param>
|
/// <returns>The log of the density value</returns>
|
public double DensityLn(double mean, double prec)
|
{
|
if (double.IsPositiveInfinity(_precisionInvScale) && _meanScale == 0.0)
|
{
|
throw new NotSupportedException();
|
}
|
|
if (double.IsPositiveInfinity(_precisionInvScale))
|
{
|
throw new NotSupportedException();
|
}
|
|
if (_meanScale <= 0.0)
|
{
|
throw new NotSupportedException();
|
}
|
|
// double e = -0.5 * prec * (mean - _meanLocation) * (mean - _meanLocation) - prec * _precisionInvScale;
|
// return (_precisionShape - 0.5) * Math.Log(prec) + _precisionShape * Math.Log(_precisionInvScale) + e - Constants.LogSqrt2Pi - SpecialFunctions.GammaLn(_precisionShape);
|
double e = -(0.5*prec*_meanScale*(mean - _meanLocation)*(mean - _meanLocation)) - (prec*_precisionInvScale);
|
return ((_precisionShape - 0.5)*Math.Log(prec)) + (_precisionShape*Math.Log(_precisionInvScale)) - (0.5*Math.Log(_meanScale)) + e - Constants.LogSqrt2Pi - SpecialFunctions.GammaLn(_precisionShape);
|
}
|
|
/// <summary>
|
/// Generates a sample from the <c>NormalGamma</c> distribution.
|
/// </summary>
|
/// <returns>a sample from the distribution.</returns>
|
public MeanPrecisionPair Sample()
|
{
|
return Sample(_random, _meanLocation, _meanScale, _precisionShape, _precisionInvScale);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the <c>NormalGamma</c> distribution
|
/// </summary>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public IEnumerable<MeanPrecisionPair> Samples()
|
{
|
while (true)
|
{
|
yield return Sample(_random, _meanLocation, _meanScale, _precisionShape, _precisionInvScale);
|
}
|
}
|
|
/// <summary>
|
/// Generates a sample from the <c>NormalGamma</c> distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="meanLocation">The location of the mean.</param>
|
/// <param name="meanScale">The scale of the mean.</param>
|
/// <param name="precisionShape">The shape of the precision.</param>
|
/// <param name="precisionInverseScale">The inverse scale of the precision.</param>
|
/// <returns>a sample from the distribution.</returns>
|
public static MeanPrecisionPair Sample(System.Random rnd, double meanLocation, double meanScale, double precisionShape, double precisionInverseScale)
|
{
|
if (Control.CheckDistributionParameters && !IsValidParameterSet(meanLocation, meanScale, precisionShape, precisionInverseScale))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
var mp = new MeanPrecisionPair();
|
|
// Sample the precision.
|
mp.Precision = double.IsPositiveInfinity(precisionInverseScale) ? precisionShape : Gamma.Sample(rnd, precisionShape, precisionInverseScale);
|
|
// Sample the mean.
|
mp.Mean = meanScale == 0.0 ? meanLocation : Normal.Sample(rnd, meanLocation, Math.Sqrt(1.0/(meanScale*mp.Precision)));
|
|
return mp;
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the NormalGamma distribution
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="meanLocation">The location of the mean.</param>
|
/// <param name="meanScale">The scale of the mean.</param>
|
/// <param name="precisionShape">The shape of the precision.</param>
|
/// <param name="precisionInvScale">The inverse scale of the precision.</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static IEnumerable<MeanPrecisionPair> Samples(System.Random rnd, double meanLocation, double meanScale, double precisionShape, double precisionInvScale)
|
{
|
if (Control.CheckDistributionParameters && !IsValidParameterSet(meanLocation, meanScale, precisionShape, precisionInvScale))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
while (true)
|
{
|
var mp = new MeanPrecisionPair();
|
|
// Sample the precision.
|
mp.Precision = double.IsPositiveInfinity(precisionInvScale) ? precisionShape : Gamma.Sample(rnd, precisionShape, precisionInvScale);
|
|
// Sample the mean.
|
mp.Mean = meanScale == 0.0 ? meanLocation : Normal.Sample(rnd, meanLocation, Math.Sqrt(1.0/(meanScale*mp.Precision)));
|
|
yield return mp;
|
}
|
}
|
}
|
}
|