// <copyright file="StudentT.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2020 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using IStation.Numerics.Random;
|
|
namespace IStation.Numerics.Distributions
|
{
|
|
/// <summary>
|
/// Continuous Univariate Skewed Generalized T-distribution.
|
/// Implements the univariate Skewed Generalized t-distribution. For details about this
|
/// distribution, see
|
/// <a href="https://en.wikipedia.org/wiki/Skewed_generalized_t_distribution">
|
/// Wikipedia - Skewed generalized t-distribution</a>.
|
/// The skewed generalized t-distribution contains many different distributions within it
|
/// as special cases based on the parameterization chosen.
|
/// </summary>
|
/// <remarks><para>This implementation is based on the R package dsgt and corresponding viginette, see
|
/// <a href="">https://cran.r-project.org/web/packages/sgt/vignettes/sgt.pdf</a>. Compared to that
|
/// implementation, the options for mean adjustment and variance adjustment are always true.
|
/// The location (μ) is the mean of the distribution.
|
/// The scale (σ) squared is the variance of the distribution.
|
/// </para>
|
/// <para>The distribution will use the <see cref="System.Random"/> by
|
/// default. Users can get/set the random number generator by using the
|
/// <see cref="RandomSource"/> property.</para>
|
/// <para>The statistics classes will check all the incoming parameters
|
/// whether they are in the allowed range.</para></remarks>
|
public class SkewedGeneralizedT : IContinuousDistribution
|
{
|
System.Random _random;
|
|
// If the given parameterization is one of the recognized special cases, then
|
// this variable is non-null and the special case is used for all functions.
|
// Else this value is null and the full formulation of the generalized distribution is used.
|
IContinuousDistribution _d;
|
|
readonly double _skewness;
|
|
/// <summary>
|
/// Initializes a new instance of the SkewedGeneralizedT class. This is a skewed generalized t-distribution
|
/// with location=0.0, scale=1.0, skew=0.0, p=2.0 and q=Inf (a standard normal distribution).
|
/// </summary>
|
public SkewedGeneralizedT()
|
{
|
_random = SystemRandomSource.Default;
|
Location = 0.0;
|
Scale = 1.0;
|
Skew = 0.0;
|
P = 2.0;
|
Q = double.PositiveInfinity;
|
|
_d = new Normal(Location, Scale, _random);
|
}
|
|
/// <summary>
|
/// Initializes a new instance of the SkewedGeneralizedT class with a particular location, scale, skew
|
/// and kurtosis parameters. Different parameterizations result in different distributions.
|
/// </summary>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="skew">The skew, 1 > λ > -1</param>
|
/// <param name="p">First parameter that controls kurtosis. Range: p > 0</param>
|
/// <param name="q">Second parameter that controls kurtosis. Range: q > 0</param>
|
public SkewedGeneralizedT(double location, double scale, double skew, double p, double q)
|
{
|
if (!IsValidParameterSet(location, scale, skew, p, q))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = SystemRandomSource.Default;
|
Location = location;
|
Scale = scale;
|
Skew = skew;
|
P = p;
|
Q = q;
|
|
_d = FindSpecializedDistribution(location, scale, skew, p, q);
|
|
if (_d == null)
|
{
|
_skewness = CalculateSkewness();
|
}
|
}
|
|
/// <summary>
|
/// Given a parameter set, returns the distribution that matches this parameterization.
|
/// </summary>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="skew">The skew, 1 > λ > -1</param>
|
/// <param name="p">First parameter that controls kurtosis. Range: p > 0</param>
|
/// <param name="q">Second parameter that controls kurtosis. Range: q > 0</param>
|
/// <returns>Null if no known distribution matches the parameterization, else the distribution.</returns>
|
public static IContinuousDistribution FindSpecializedDistribution(double location, double scale, double skew, double p, double q)
|
{
|
if (p == double.PositiveInfinity)
|
{
|
scale *= Math.Sqrt(3.0);
|
return new ContinuousUniform(location - scale, location + scale);
|
}
|
|
if (q == double.PositiveInfinity)
|
return new SkewedGeneralizedError(location, scale, skew, p);
|
|
return null;
|
}
|
|
/// <summary>
|
/// Gets or sets the random number generator which is used to draw random samples.
|
/// </summary>
|
public System.Random RandomSource
|
{
|
get => _random;
|
set => _random = value ?? SystemRandomSource.Default;
|
}
|
|
/// <summary>
|
/// A string representation of the distribution.
|
/// </summary>
|
/// <returns>a string representation of the distribution.</returns>
|
public override string ToString()
|
{
|
return $"SkewedGeneralizedT(μ = {Location}, σ = {Scale}, λ = {Skew}, p = {P}, q = {Q})";
|
}
|
|
/// <summary>
|
/// Tests whether the provided values are valid parameters for this distribution.
|
/// </summary>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="skew">The skew, 1 > λ > -1</param>
|
/// <param name="p">First parameter that controls kurtosis. Range: p > 0</param>
|
/// <param name="q">Second parameter that controls kurtosis. Range: q > 0</param>
|
public static bool IsValidParameterSet(double location, double scale, double skew, double p, double q)
|
{
|
return scale > 0.0 && skew > -1.0 && skew < 1.0 && p > 0.0 && q > 0.0 && p*q> 2.0 && !double.IsNaN(location);
|
}
|
|
/// <summary>
|
/// Gets the location (μ) of the Skewed Generalized t-distribution.
|
/// </summary>
|
public double Location { get; }
|
|
/// <summary>
|
/// Gets the scale (σ) of the Skewed Generalized t-distribution. Range: σ > 0.
|
/// </summary>
|
public double Scale { get; }
|
|
/// <summary>
|
/// Gets the skew (λ) of the Skewed Generalized t-distribution. Range: 1 > λ > -1.
|
/// </summary>
|
public double Skew { get; }
|
|
/// <summary>
|
/// Gets the first parameter that controls the kurtosis of the distribution. Range: p > 0.
|
/// </summary>
|
public double P { get; }
|
|
/// <summary>
|
/// Gets the second parameter that controls the kurtosis of the distribution. Range: q > 0.
|
/// </summary>
|
public double Q { get; }
|
|
// No skew implies Median=Mode=Mean
|
public double Mode => _d?.Mode ?? (Skew == 0 ? Mean : Mean - AdjustAddend(AdjustScale(Scale, Skew, P, Q), Skew, P, Q));
|
|
public double Minimum => _d?.Minimum ?? double.NegativeInfinity;
|
|
public double Maximum => _d?.Maximum ?? double.PositiveInfinity;
|
|
// Mean=Location due to our adjustments made
|
public double Mean => _d?.Mean ?? Location;
|
|
// Variance=Scale*Scale due to our adjustments made
|
public double Variance => _d?.Variance ?? Scale * Scale;
|
|
public double StdDev => _d?.StdDev ?? Scale;
|
|
public double Entropy => _d?.Entropy ?? throw new NotImplementedException();
|
|
public double Skewness => _d?.Skewness ?? _skewness;
|
|
// No skew implies Median=Mode=Mean
|
// Else find it via the point where CDF gives 0.5
|
public double Median => _d?.Median ?? (Skew == 0 ? Mean : InverseCumulativeDistribution(0.5));
|
|
double CalculateSkewness()
|
{
|
if (P * Q <= 3 || Skew == 0)
|
{
|
return 0.0;
|
}
|
|
var scale = AdjustScale(Scale, Skew, P, Q);
|
var b1 = SpecialFunctions.Beta(1.0 / P, Q);
|
var b2 = SpecialFunctions.Beta(2.0 / P, Q - 1.0 / P);
|
var b3 = SpecialFunctions.Beta(3.0 / P, Q - 2.0 / P);
|
var b4 = SpecialFunctions.Beta(4.0 / P, Q - 3.0 / P);
|
|
var t1 = (2.0 * Math.Pow(Q, 3.0 / P) * Skew * Math.Pow(scale, 3.0)) / Math.Pow(b1, 3.0);
|
var t2 = 8.0 * Skew * Skew * Math.Pow(b2, 3.0);
|
var t3 = 3.0 * (1.0 + 3.0 * Skew * Skew) * b1;
|
var t4 = b2 * b3;
|
var t5 = 2.0 * (1.0 + Skew * Skew) * Math.Pow(b1, 2.0) * b4;
|
|
return t1 * (t2 - t3 * t4 + t5);
|
}
|
|
static double AdjustScale(double scale, double skew, double p, double q)
|
{
|
var b1 = SpecialFunctions.Beta(3.0 / p, q - 2.0 / p);
|
var b2 = SpecialFunctions.Beta(1.0 / p, q);
|
var b3 = SpecialFunctions.Beta(2.0 / p, q - 1.0 / p);
|
var b4 = SpecialFunctions.Beta(1.0 / p, q);
|
|
return scale / (Math.Pow(q, 1.0 / p) * Math.Sqrt((3.0 * skew * skew + 1.0) * b1 / b2 - 4.0 * skew * skew * ((b3 / b4) * (b3 / b4))));
|
}
|
|
// Note: Scale is assumed to be adjusted already when calling this function.
|
static double AdjustX(double x, double scale, double skew, double p, double q)
|
{
|
return x + AdjustAddend(scale, skew, p, q);
|
}
|
|
// Note: Scale is assumed to be adjusted already when calling this function.
|
static double AdjustAddend(double scale, double skew, double p, double q)
|
{
|
var b1 = SpecialFunctions.Beta(2.0 / p, q - 1.0 / p);
|
var b2 = SpecialFunctions.Beta(1.0 / p, q);
|
|
return (2.0 * scale * skew * Math.Pow(q, 1.0 / p) * b1) / b2;
|
}
|
|
/// <summary>
|
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
|
/// </summary>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="skew">The skew, 1 > λ > -1</param>
|
/// <param name="p">First parameter that controls kurtosis. Range: p > 0</param>
|
/// <param name="q">Second parameter that controls kurtosis. Range: q > 0</param>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <returns>the density at <paramref name="x"/>.</returns>
|
/// <seealso cref="Density"/>
|
public static double PDF(double location, double scale, double skew, double p, double q, double x)
|
{
|
if (!IsValidParameterSet(location, scale, skew, p, q))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
var fn = PDFunc(location, scale, skew, p, q, false);
|
return fn(x);
|
}
|
|
/// <summary>
|
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
|
/// </summary>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="skew">The skew, 1 > λ > -1</param>
|
/// <param name="p">First parameter that controls kurtosis. Range: p > 0</param>
|
/// <param name="q">Second parameter that controls kurtosis. Range: q > 0</param>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <returns>the density at <paramref name="x"/>.</returns>
|
/// <seealso cref="Density"/>
|
public static double PDFLn(double location, double scale, double skew, double p, double q, double x)
|
{
|
if (!IsValidParameterSet(location, scale, skew, p, q))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
var fn = PDFunc(location, scale, skew, p, q, true);
|
return fn(x);
|
}
|
|
static double PDFull(double location, double scale, double skew, double p, double q, double x)
|
{
|
scale = AdjustScale(scale, skew, p, q);
|
x = AdjustX(x, scale, skew, p, q);
|
|
var b = SpecialFunctions.Beta(1.0 / p, q);
|
var skewSign = Math.Sign(x - location);
|
var d1 = Math.Pow(Math.Abs(x - location), p);
|
var d2 = q * Math.Pow(scale, p) * Math.Pow(skew * skewSign + 1.0, p);
|
|
var denominator = 2.0 * scale * Math.Pow(q, 1.0 / p) * b * Math.Pow(d1 / d2 + 1.0, 1.0 / p + q);
|
return p / denominator;
|
}
|
|
static double PDFullLn(double location, double scale, double skew, double p, double q, double x)
|
{
|
scale = AdjustScale(scale, skew, p, q);
|
x = AdjustX(x, scale, skew, p, q);
|
|
var bLn = SpecialFunctions.BetaLn(1.0 / p, q);
|
return Math.Log(p) - Math.Log(2.0) - Math.Log(scale) - Math.Log(q) / p - bLn - (1.0 / p + q) *
|
Math.Log(1.0 + Math.Pow(Math.Abs(x - location), p) /
|
(q * Math.Pow(scale, p) * Math.Pow(1.0 + skew * Math.Sign(x - location), p)));
|
}
|
|
// For known parameterizations we just use the existing distributions as visualized
|
// by Hansen, McDonald and Newey (2010).
|
// Note that, for all cases where skew is required to be 0, if skew is non-zero, this
|
// simply gives the corresponding skewed version of the distribution.
|
static Func<double, double> PDFunc(double location, double scale, double skew, double p, double q, bool ln)
|
{
|
if (p == double.PositiveInfinity)
|
{
|
scale *= Math.Sqrt(3.0);
|
return x => ln ? ContinuousUniform.PDFLn(location - scale, location + scale, x) :
|
ContinuousUniform.PDF(-1.0 * (Math.Sqrt(3.0) * scale + location), Math.Sqrt(3.0) * scale + location, x);
|
}
|
if (q == double.PositiveInfinity)
|
return x => ln ? SkewedGeneralizedError.PDFLn(location, scale, skew, p, x) :
|
SkewedGeneralizedError.PDF(location, scale, skew, p, x);
|
|
return x => ln ? PDFullLn(location, scale, skew, p, q, x) :
|
PDFull(location, scale, skew, p, q, x);
|
}
|
|
/// <summary>
|
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="skew">The skew, 1 > λ > -1</param>
|
/// <param name="p">First parameter that controls kurtosis. Range: p > 0</param>
|
/// <param name="q">Second parameter that controls kurtosis. Range: q > 0</param>
|
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
|
/// <seealso cref="CumulativeDistribution"/>
|
public static double CDF(double location, double scale, double skew, double p, double q, double x)
|
{
|
if (!IsValidParameterSet(location, scale, skew, p, q))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
// Note: Adapted from the R package,
|
// based on a transformation of the cumulative probability density function that uses the
|
// incomplete beta function or incomplete gamma function.
|
|
scale = AdjustScale(scale, skew, p, q);
|
x = AdjustX(x, scale, skew, p, q) - location;
|
|
var flip = x > 0;
|
if (flip)
|
{
|
skew = -skew;
|
x = -x;
|
}
|
|
var res = (1.0 - skew) / 2.0 + (skew - 1.0) / 2.0 * Beta.CDF(1.0 / p, q, 1.0 / (1.0 + q * Math.Pow(scale * (1.0 - skew) / -x, p)));
|
return flip ? 1.0 - res : res;
|
}
|
|
/// <summary>
|
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
|
/// at the given probability. This is also known as the quantile or percent point function.
|
/// </summary>
|
/// <param name="pr">The location at which to compute the inverse cumulative density.</param>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="skew">The skew, 1 > λ > -1</param>
|
/// <param name="p">First parameter that controls kurtosis. Range: p > 0</param>
|
/// <param name="q">Second parameter that controls kurtosis. Range: q > 0</param>
|
/// <returns>the inverse cumulative density at <paramref name="p"/>.</returns>
|
/// <seealso cref="InverseCumulativeDistribution"/>
|
public static double InvCDF(double location, double scale, double skew, double p, double q, double pr)
|
{
|
if (!IsValidParameterSet(location, scale, skew, p, q))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
// If parameters represent a specialized distribution, then we use that distribution to avoid
|
// problems with infinite p or q parameters.
|
var d = FindSpecializedDistribution(location, scale, skew, p, q);
|
// InverseCumulativeDistribution is not a part of the interface, so resort to type-checking.
|
if (d != null)
|
{
|
switch (d)
|
{
|
case SkewedGeneralizedError sge:
|
return sge.InverseCumulativeDistribution(pr);
|
case ContinuousUniform u:
|
return u.InverseCumulativeDistribution(pr);
|
}
|
}
|
|
// Note: Adapted from the R package,
|
// solving for the inverse of the CDF that uses the inverse of the incomplete beta function or
|
// incomplete gamma function
|
|
scale = AdjustScale(scale, skew, p, q);
|
|
var flip = pr > (1.0 - skew) / 2.0;
|
var lambda = skew;
|
if (flip)
|
{
|
pr = 1.0 - pr;
|
lambda = -lambda;
|
}
|
|
var res = scale * (lambda - 1.0) * Math.Pow(1.0 / (q * Beta.InvCDF(1.0 / p, q, 1.0 - 2.0 * pr / (1.0 - lambda))) - 1.0 / q, -1.0 / p);
|
|
if (flip)
|
res = -res;
|
res += location;
|
return res - AdjustAddend(scale, skew, p, q);
|
}
|
|
public double CumulativeDistribution(double x)
|
{
|
return _d?.CumulativeDistribution(x) ?? CDF(Location, Scale, Skew, P, Q, x);
|
}
|
|
/// <summary>
|
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
|
/// at the given probability. This is also known as the quantile or percent point function.
|
/// </summary>
|
/// <param name="p">The location at which to compute the inverse cumulative density.</param>
|
/// <returns>the inverse cumulative density at <paramref name="p"/>.</returns>
|
/// <seealso cref="InvCDF"/>
|
public double InverseCumulativeDistribution(double p)
|
{
|
// InverseCumulativeDistribution is not a part of the interface, so resort to type-checking.
|
if (_d != null)
|
{
|
switch (_d)
|
{
|
case SkewedGeneralizedError sge:
|
return sge.InverseCumulativeDistribution(p);
|
case ContinuousUniform u:
|
return u.InverseCumulativeDistribution(p);
|
}
|
}
|
|
return InvCDF(Location, Scale, Skew, P, Q, p);
|
}
|
|
public double Density(double x)
|
{
|
return _d?.Density(x) ?? PDF(Location, Scale, Skew, P, Q, x);
|
}
|
|
public double DensityLn(double x)
|
{
|
return _d?.DensityLn(x) ?? PDFLn(Location, Scale, Skew, P, Q, x);
|
}
|
|
public double Sample()
|
{
|
return SampleUnchecked(_random, Location, Scale, Skew, P, Q);
|
}
|
|
public void Samples(double[] values)
|
{
|
SamplesUnchecked(_random, values, Location, Scale, Skew, P, Q);
|
}
|
|
public IEnumerable<double> Samples()
|
{
|
return SamplesUnchecked(_random, Location, Scale, Skew, P, Q);
|
}
|
|
static double SampleUnchecked(System.Random rnd, double location, double scale, double skew, double p, double q)
|
{
|
var u = ContinuousUniform.Sample(rnd, 0, 1);
|
return InvCDF(location, scale, skew, p, q, u);
|
}
|
|
static void SamplesUnchecked(System.Random rnd, double[] values, double location, double scale, double skew, double p, double q)
|
{
|
for (int i = 0; i < values.Length; i++)
|
{
|
values[i] = SampleUnchecked(rnd, location, scale, skew, p, q);
|
}
|
}
|
|
static IEnumerable<double> SamplesUnchecked(System.Random rnd, double location, double scale, double skew, double p, double q)
|
{
|
while (true)
|
{
|
yield return SampleUnchecked(rnd, location, scale, skew, p, q);
|
}
|
}
|
|
/// <summary>
|
/// Generates a sample from the Skew Generalized t-distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="skew">The skew, 1 > λ > -1</param>
|
/// <param name="p">First parameter that controls kurtosis. Range: p > 0</param>
|
/// <param name="q">Second parameter that controls kurtosis. Range: q > 0</param>
|
/// <returns>a sample from the distribution.</returns>
|
public static double Sample(System.Random rnd, double location, double scale, double skew, double p, double q)
|
{
|
if (!IsValidParameterSet(location, scale, skew, p, q))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SampleUnchecked(rnd, location, scale, skew, p, q);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the Skew Generalized t-distribution using inverse transform.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="skew">The skew, 1 > λ > -1</param>
|
/// <param name="p">First parameter that controls kurtosis. Range: p > 0</param>
|
/// <param name="q">Second parameter that controls kurtosis. Range: q > 0</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static IEnumerable<double> Samples(System.Random rnd, double location, double scale, double skew, double p, double q)
|
{
|
if (!IsValidParameterSet(location, scale, skew, p, q))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SamplesUnchecked(rnd, location, scale, skew, p, q);
|
}
|
|
/// <summary>
|
/// Fills an array with samples from the Skew Generalized t-distribution using inverse transform.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="values">The array to fill with the samples.</param>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="skew">The skew, 1 > λ > -1</param>
|
/// <param name="p">First parameter that controls kurtosis. Range: p > 0</param>
|
/// <param name="q">Second parameter that controls kurtosis. Range: q > 0</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static void Samples(System.Random rnd, double[] values, double location, double scale, double skew, double p, double q)
|
{
|
if (!IsValidParameterSet(location, scale, skew, p, q))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
SamplesUnchecked(rnd, values, location, scale, skew, p, q);
|
}
|
|
/// <summary>
|
/// Generates a sample from the Skew Generalized t-distribution.
|
/// </summary>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="skew">The skew, 1 > λ > -1</param>
|
/// <param name="p">First parameter that controls kurtosis. Range: p > 0</param>
|
/// <param name="q">Second parameter that controls kurtosis. Range: q > 0</param>
|
/// <returns>a sample from the distribution.</returns>
|
public static double Sample(double location, double scale, double skew, double p, double q)
|
{
|
if (!IsValidParameterSet(location, scale, skew, p, q))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SampleUnchecked(SystemRandomSource.Default, location, scale, skew, p, q);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the Skew Generalized t-distribution using inverse transform.
|
/// </summary>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="skew">The skew, 1 > λ > -1</param>
|
/// <param name="p">First parameter that controls kurtosis. Range: p > 0</param>
|
/// <param name="q">Second parameter that controls kurtosis. Range: q > 0</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static IEnumerable<double> Samples(double location, double scale, double skew, double p, double q)
|
{
|
if (!IsValidParameterSet(location, scale, skew, p, q))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SamplesUnchecked(SystemRandomSource.Default, location, scale, skew, p, q);
|
}
|
|
/// <summary>
|
/// Fills an array with samples from the Skew Generalized t-distribution using inverse transform.
|
/// </summary>
|
/// <param name="values">The array to fill with the samples.</param>
|
/// <param name="location">The location (μ) of the distribution.</param>
|
/// <param name="scale">The scale (σ) of the distribution. Range: σ > 0.</param>
|
/// <param name="skew">The skew, 1 > λ > -1</param>
|
/// <param name="p">First parameter that controls kurtosis. Range: p > 0</param>
|
/// <param name="q">Second parameter that controls kurtosis. Range: q > 0</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static void Samples(double[] values, double location, double scale, double skew, double p, double q)
|
{
|
if (!IsValidParameterSet(location, scale, skew, p, q))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
SamplesUnchecked(SystemRandomSource.Default, values, location, scale, skew, p, q);
|
}
|
}
|
}
|